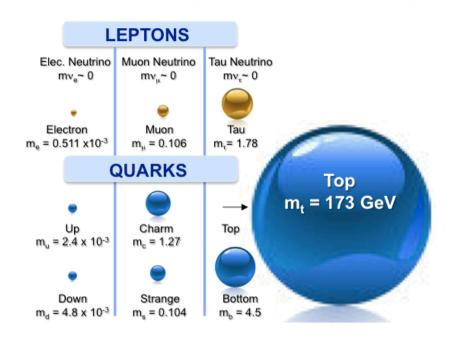
Recent results on top quark physics

María Aldaya (DESY)

for the ATLAS, LHCb, and CMS collaborations



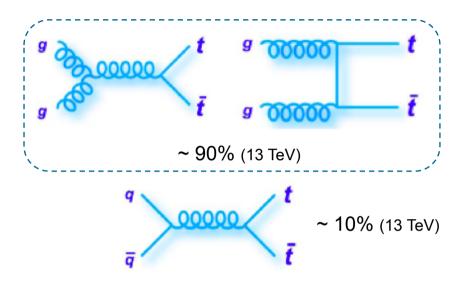
28th Rencontres de Blois on Particle Physics and Cosmology 29 May – 3 June 2016

Why is the top quark still interesting?

Only quark that decays before hadronizing:

$$\tau(\text{had}) \sim 1/\Lambda_{\text{QCD}} \sim 2 \times 10^{-24} \text{ s}$$

 $\tau(\text{top}) \sim 5 \times 10^{-25} \text{ s} < 1/\Lambda_{\text{QCD}}$

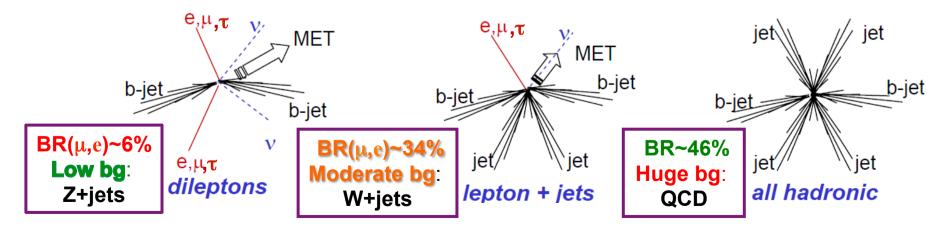

→ No bound states, spin information propagated to decay products

- Heaviest elementary particle known
 - top: largest Yukawa coupling to Higgs
- Several open questions:
 - Is the top mass generated by the Higgs mechanism?
 - Role in EW symmetry breaking?
 - Role in beyond SM (BSM) physics?
- Main background for Higgs and many searches for BSM physics

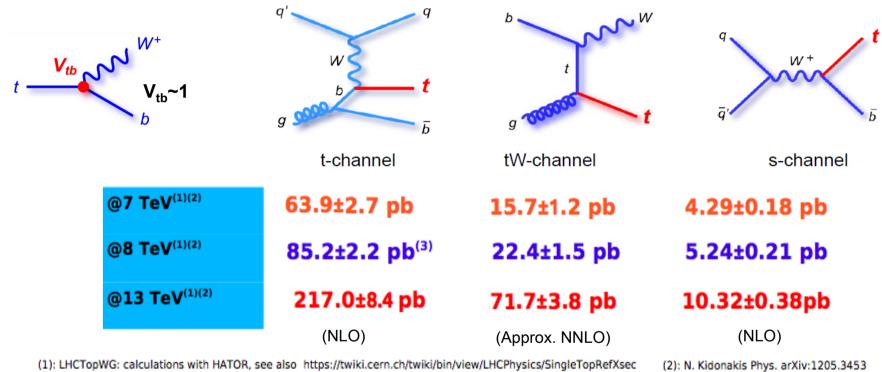
Precise understanding of top quark production and properties is crucial

Top quark pairs

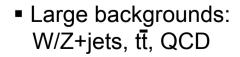
Strong top pair (t̄t) production: sensitive to αs and PDFs

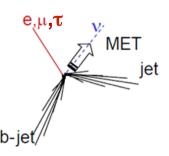


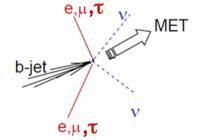
All with top mass = 172.5 GeV

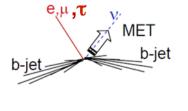

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO

■ In SM, t → Wb (~100%) → W decay defines final states

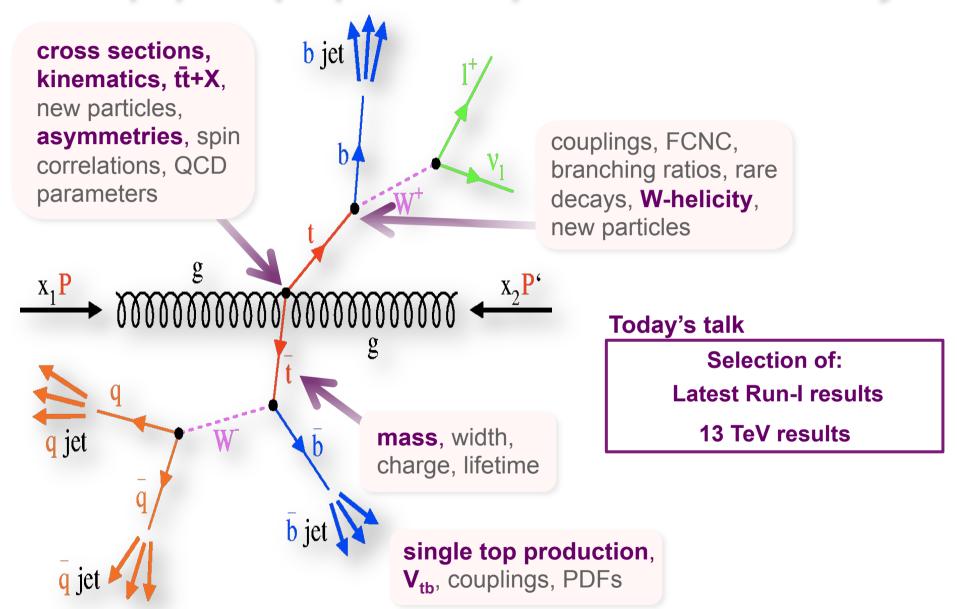

Single top

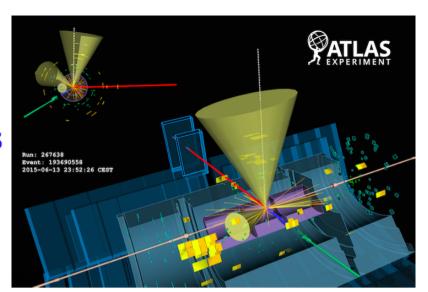

• Electroweak single top production: tWb vertex in production, sensitive to Vtb




(3): M. Burcherseifer, F.Caola, K. Melnikov: arXiv:1404.7116 All with top mass = 172.5 GeV

Final states:





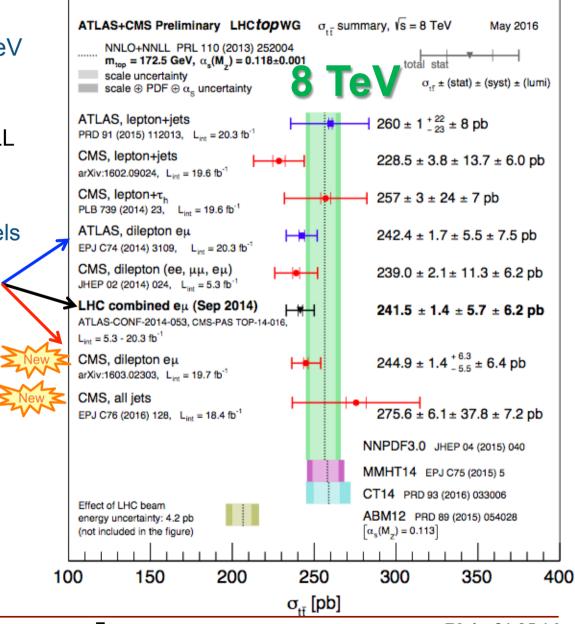
Top quark properties in production and decay

13 TeV candidate: eμ + 2 b-tags

Top quark production (differential) cross sections

- First step in understanding top physics
- Test of QCD calculations and search for new physics

Run-I inclusive tt cross section

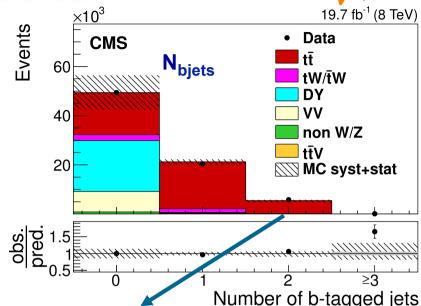

All channels measured at 7 & 8 TeV to look for the unexpected

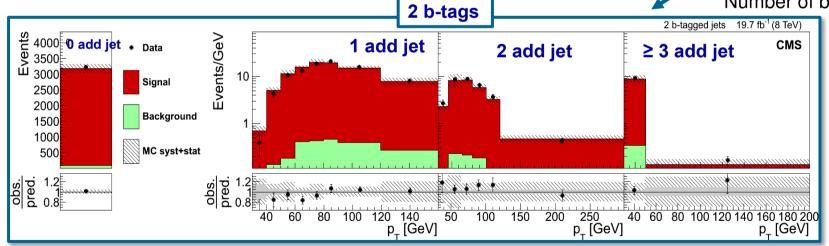
Good agreement with NNLO+NNLL

Highest precision: dilepton channels
 ~4%, similar to theory prediction

• High purity (~90%)

 Also used to set limits to stop quark production (for stop mass ~ top mass)


tt cross section in eµ at 7 & 8 TeV cms, arXiv:1603.02303



Last word from Run-I in dileptons at CMS

Selection: opp.-sign isolated eµ pair, jets, b-tags

- Template fit in different Nbjets and additional Njets categories
 - Fit to p_T of softest jet in each category
 - Constrain backgrounds and main systematic uncertainties

7 TeV:
$$\sigma_{t\bar{t}} = 173.6 \pm 2.1 \, (\mathrm{stat})^{+\,4.5}_{-\,4.0} \, (\mathrm{syst}) \pm 3.8 \, (\mathrm{lumi}) \, \mathrm{pb}$$

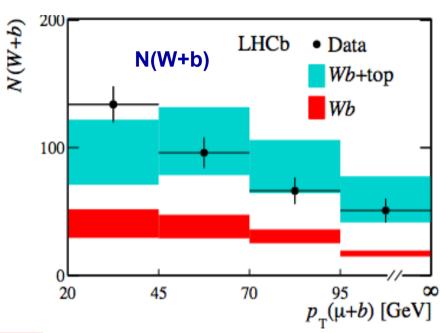
8 TeV: $\sigma_{t\bar{t}} = 244.9 \pm 1.4 \, (\mathrm{stat})^{+\,6.3}_{-\,5.5} \, (\mathrm{syst}) \pm 6.4 \, (\mathrm{lumi}) \, \mathrm{pb}$

(3.7%)

Main syst: luminosity, trigger, lepton selection

First observation of top quarks at LHCb!

- Forward region: enhanced sensitivity to BSM, can constrain gluon PDF at larger x
- Combined measurement of tt (75%) and single top (25%) in events with


1 top
$$\rightarrow$$
 Wb \rightarrow $\mu\nu$ b:

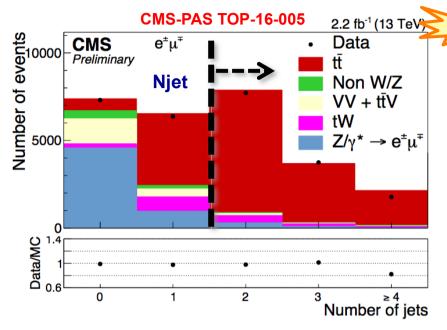
- 1 μ : $p_T > 25$ GeV, η in (2.0, 4.5)
- ≥ 1 jet: p_T in (50, 100) GeV, η in (2.2, 4.2)
- Jet must be b-tagged
- Extract top content from likelihood fit:

$$\sigma(\text{top})[7 \text{ TeV}] = 239 \pm 53 \text{ (stat)} \pm 33 \text{ (syst)} \pm 24 \text{ (theory) fb}$$

 $\sigma(\text{top})[8 \text{ TeV}] = 289 \pm 43 \text{ (stat)} \pm 40 \text{ (syst)} \pm 29 \text{ (theory) fb}$

 Consistent with SM prediction, significance of 5.4 standard deviations

Main syst: b-tagging, theory



NLO using MCFM predicts

$$\sigma(\text{top})[7\text{TeV}] = 180^{+51}_{-41}$$

$$\sigma(\text{top})[8\text{TeV}] = 312^{+83}_{-68}$$

tt cross section in eμ at 13 TeV

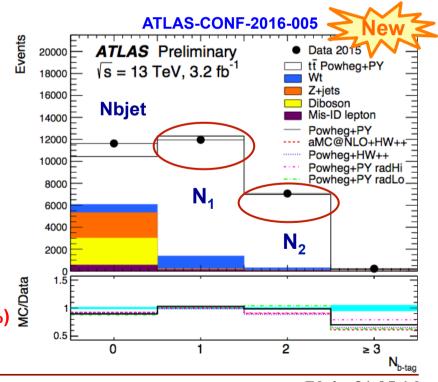
- ATLAS: already constraining some systematic uncertainties with data!
 - Simultaneous fit to $\sigma_{tt}\,\&$ efficiency to select, reconstruct and b-tag a jet

$$N_1 = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b(1-C_b\epsilon_b)+N_1^{bkg}$$

$$N_2 = \mathcal{L} \sigma_{t\bar{t}} \epsilon_{\mathrm{e}\mu} C_b \epsilon_b^2 + N_2^{bkg}$$

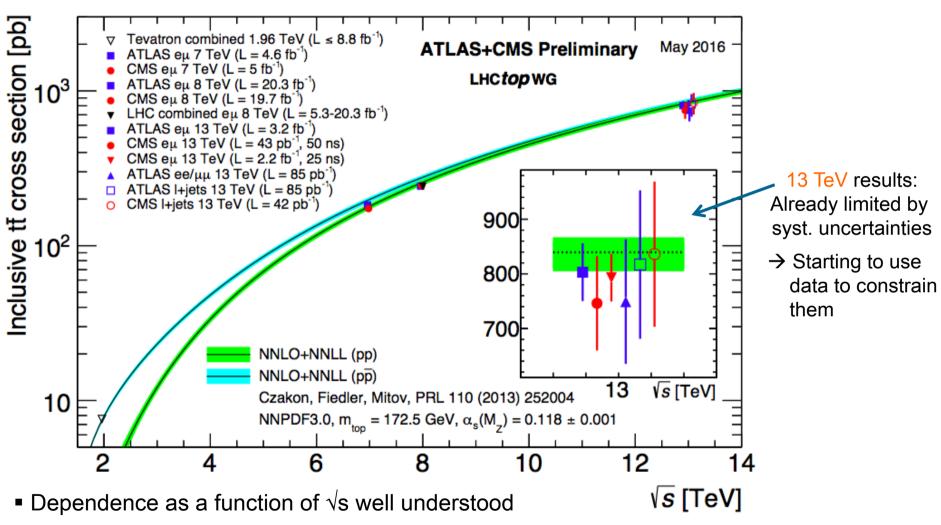
$$\sigma_{\rm tt}$$
 = 803 ± 7 (stat) ± 27 (syst) ± 45 (lumi) pb

Main syst: luminosity, tt modelling


CMS: focus on counting high-purity eμ events

Selection: eμ pair, ≥ 2 jets, ≥1 b-tag

(~6%)

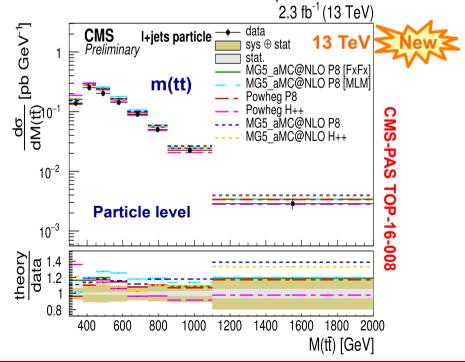

$$\sigma_{tt}$$
 = 793 ± 8 (stat) ± 38 (syst) ± 21 (lumi) pb

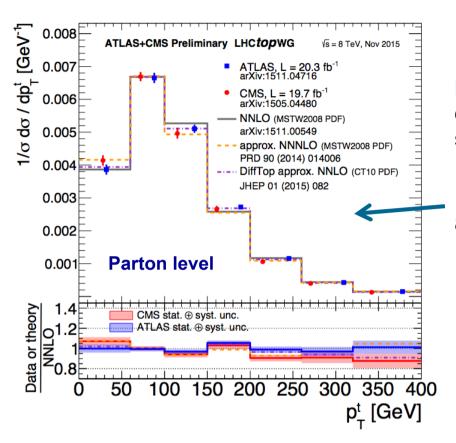
Main syst: luminosity, trigger

tt cross section measured at all energies

Re-established tt production at 13 TeV with very early data (< 100 pb⁻¹)

■ ATLAS: tt/Z ratio (13 TeV): 0.445 ± 0.039 → test gg/qq ratio, cancel some syst. (lumi) ATLAS-CONF -2015-049

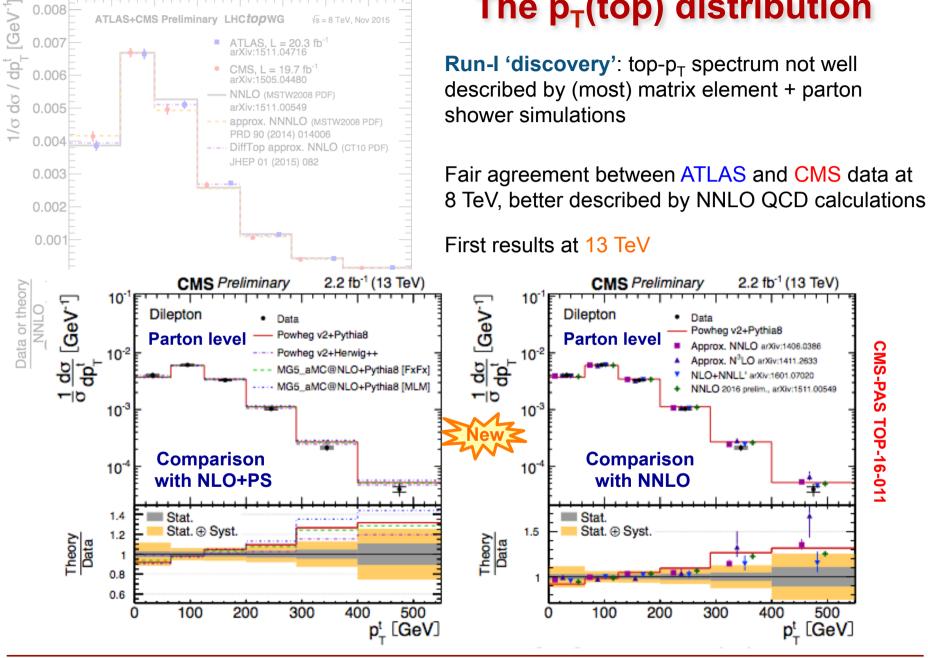

tt differential cross sections


Scrutinize tt production in many channels as a function of many kinematic observables

- → Precision tests of pQCD in different regions of phase space, window to BSM physics
- Use final-state products to reconstruct top quark candidates
- Correct for detector effects & acceptance → unfolding
 - Parton level: allows comparison with fixed-order calculations

 $^{1/\sigma_{tt}} \cdot d \sigma_{tt} / d m^{tt} / GeV$ 8 TeV ATLAS Full phase-space $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ Data PWG+PY6 h_{damp}=m_t NNLO arXiv:1511.00549 m(tt) Stat.+Syst. unc. 10-2 arXiv:1511.04716 **Parton level** 10⁻³ 10 Prediction Data 400 1000 500 600 700 800 900 1100 mtt [GeV]

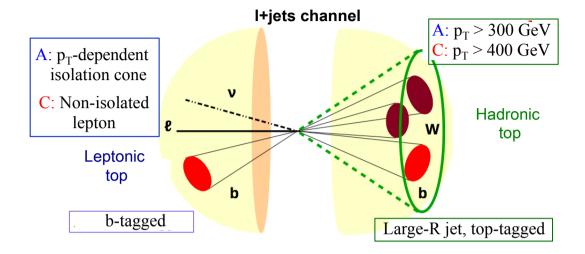
 Particle level: mimic detector-level selections and reconstruction algorithms (closer to what is measured in the detector)

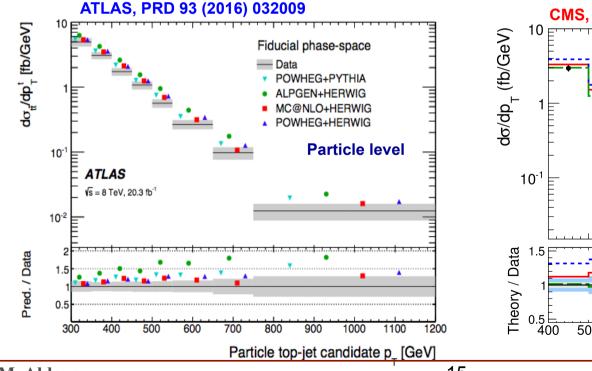


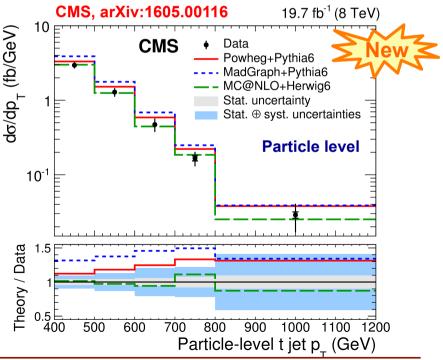
The $p_T(top)$ distribution

Run-I 'discovery': top-p_T spectrum not well described by (most) matrix element + parton shower simulations

Fair agreement between ATLAS and CMS data at 8 TeV, better described by NNLO QCD calculations

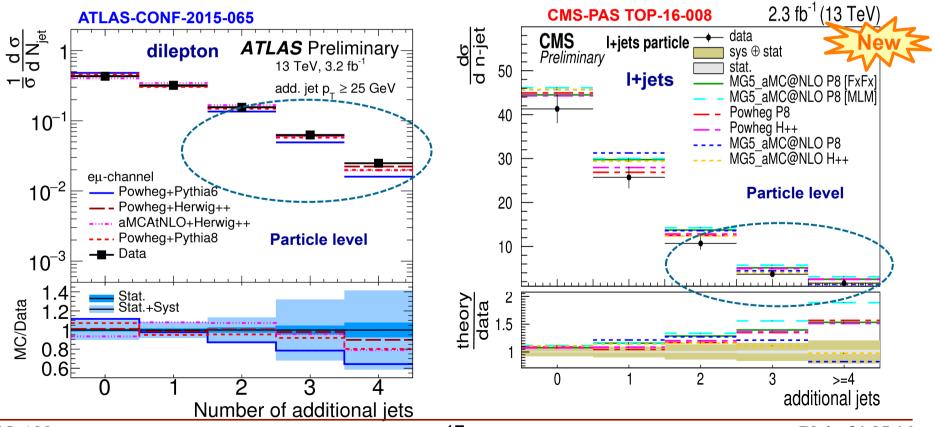

The $p_T(top)$ distribution




High p_T tops: entering boosted regime in Run-I

Measure top quarks at high p_T using optimized event selection & reconstruction up to TeV range !

- Parton and particle level
- Slightly softer p_T spectrum in data for both ATLAS & CMS



tt production + "friends"

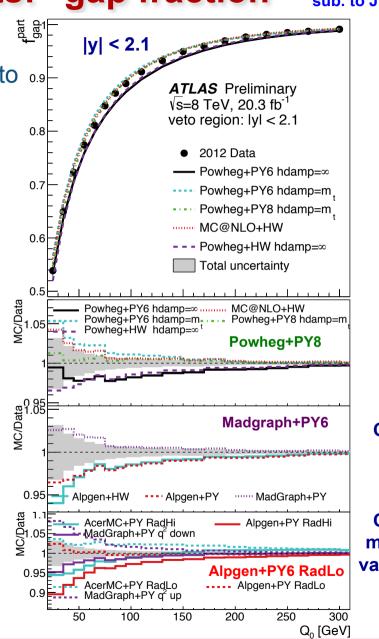
tt+jets associated production at 13 TeV

Large fraction of tt events have extra hard jets from initial or final state radiation

- Sensitive to matching of matrix element to parton shower
- Reveal presence of new physics in tt+jets final states, bg for tt+H
- High jet multiplicity dominated by parton shower, further tuning ongoing to improve description of data (CMS, see backup)

tt with veto on extra jets: "gap fraction"

ATLAS, to be sub. to JHEP



Quantify additional jet activity from quark and gluon radiation with a jet veto 0.9

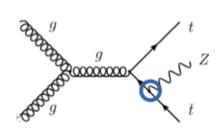
- Use dilepton eμ events eμ pair, ≥ 2 b-tags
- Fraction of events with **no** extra jet above a given p_T (Q₀) for |y| < 2.1
 → sensitive to leading-p_T add. jet
- Comparison to different (N)LO + PS MC generators, also with varied PS radiation

Overall good agreement between data and predictions

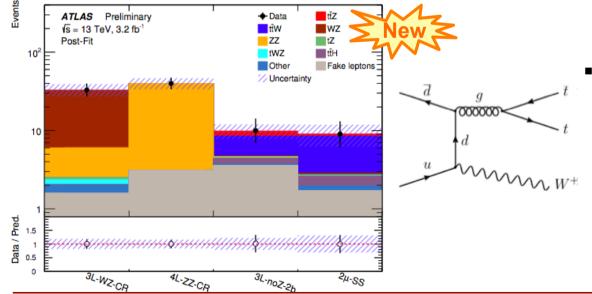
Can help constraining QCD radiation uncertainty

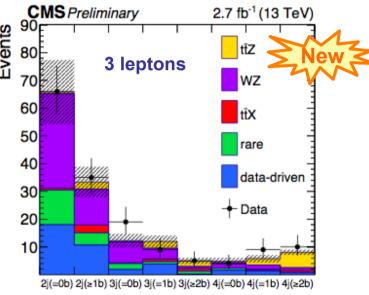
Compare to NLO+PS

Compare to LO multileg+PS


Compare to LO multileg+PS with varied PS radiation

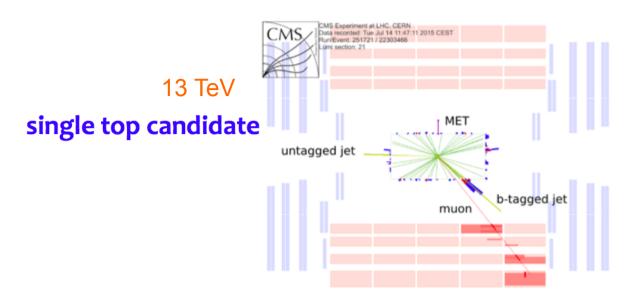
Very rare processes in SM


- Measure coupling of top to Z boson, important backgrounds for BSM and tt+H
- Established at 8 TeV (also t̄t+γ), first results at 13 TeV!
- tī+Z (ATLAS & CMS):
 - 3-4 leptons, > 2 jets in different (b) jet categories
 - Extract tt+Z from likelihood fit


ATLAS:
$$\sigma(t\overline{t}+Z) = 0.9 \pm 0.3 \text{ pb}$$

CMS: $\sigma(t\bar{t}+Z) = 1.1 \pm 0.4 \text{ pb}$

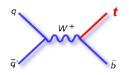
Theory (aMC@NLO) = $0.76 \pm 0.08 \text{ pb}$

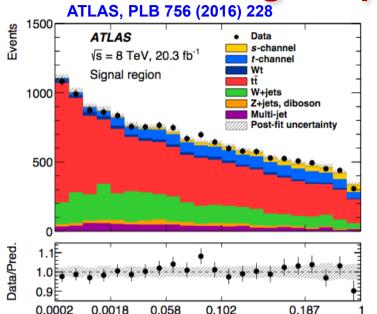


- tī+W (ATLAS):
- 2-3 leptons (one same-sign pair) and2 jets in different categories
 - Extract tt+W from likelihood fit

$$\sigma(t\overline{t}+W) = 1.4 \pm 0.8 \text{ pb}$$

Theory (aMC@NLO) = 0.57 ± 0.06 pb




Single top quark

- Probe CKM matrix element |V_{tb}|, EWK coupling structure
- Probe alternative production mechanisms (e.g heavy bosons, FCNC)
- Sensitive to b-PDF and u/d-PDFs

→ More in talk by J. Andrea

Single top s-channel at 8 TeV

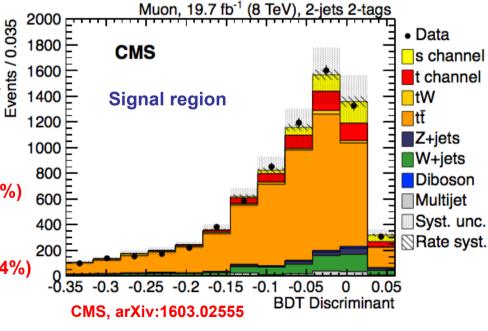
ATLAS: First evidence of s-channel at LHC!

Selection: 1 lepton and 2 b-tagged jets

- Use matrix element approach to discriminate signal
- Profile likelihood fit including systematics

$$\sigma_s = 4.8 \pm 0.8 \text{(stat.)}_{-1.3}^{+1.6} \text{(syst.) pb}$$
 (34%)

 3.2σ obs $(3.9\sigma \exp)$


CMS: s-channel at 7+8 TeV Selection: 1 lepton, 2-3 jets, 1-2 b-tags

P(SIX)

Use MVA approach to discriminate signal

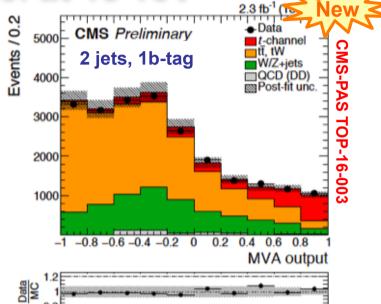
8 TeV:
$$\sigma_s = 13.4 \pm 7.3 \text{ (stat + syst) pb}$$
 (54% 2.3 σ obs (0.8 σ exp)

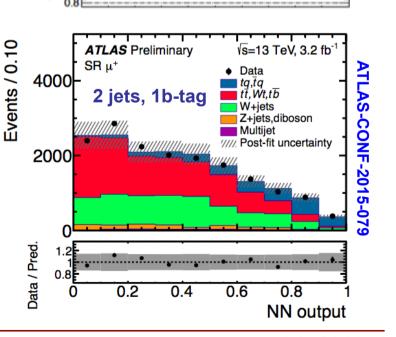
7 TeV:
$$\sigma_s = 7.1 \pm 8.1 \text{ (stat + syst) pb}$$
 (114%)

0.0002

Single top t-channel at 13 TeV

- Control regions for main backgrounds
- Extract signal from fit to MVA discriminator optimized to maximize background rejection
 - Most relevant variables: η(j), m_t, m_{lvb}, m_{jb}, m_T(W)
- Cross sections:


ATLAS:
$$\sigma(t+\overline{t}) = 229 \pm 48 \text{ pb}$$
 (21%)


CMS: $\sigma(t+\overline{t}) = 228 \pm 33 \text{ pb}$ (21%)

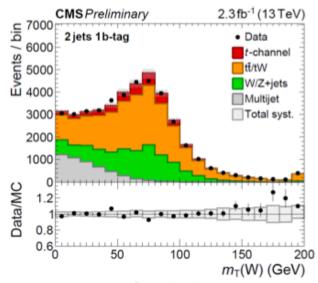
Main syst for both: signal model, JES

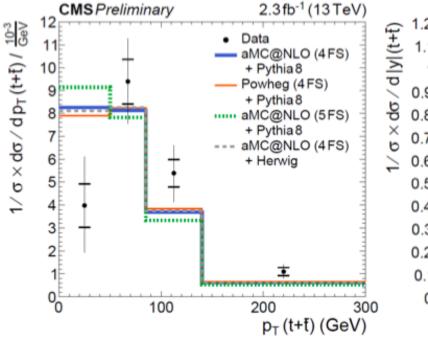
■ CKM matrix element $|V_{tb}| = \sqrt{(\sigma_{t-ch.}^{obs.} / \sigma_{t-ch.}^{theo.})}$:

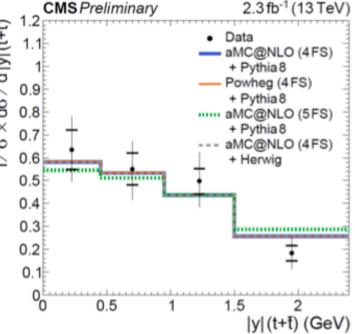
ATLAS:
$$|V_{tb}| = 1.03 \pm 0.11$$

CMS: $|V_{tb}| = 1.02 \pm 0.07$ (for $|V_{ts}|$, $|V_{td}| << |V_{tb}|$)

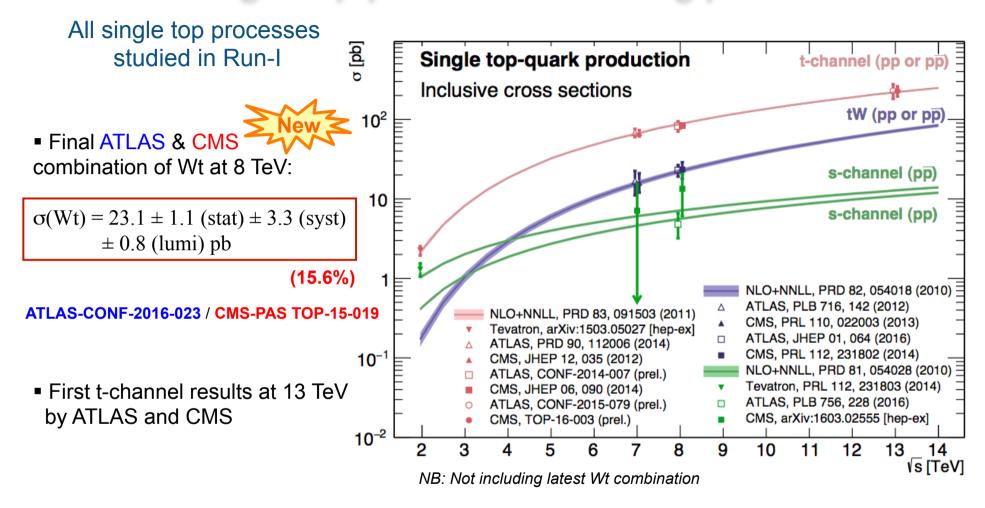
t-channel differential at 13 TeV CMS-PAS TOP-16-004

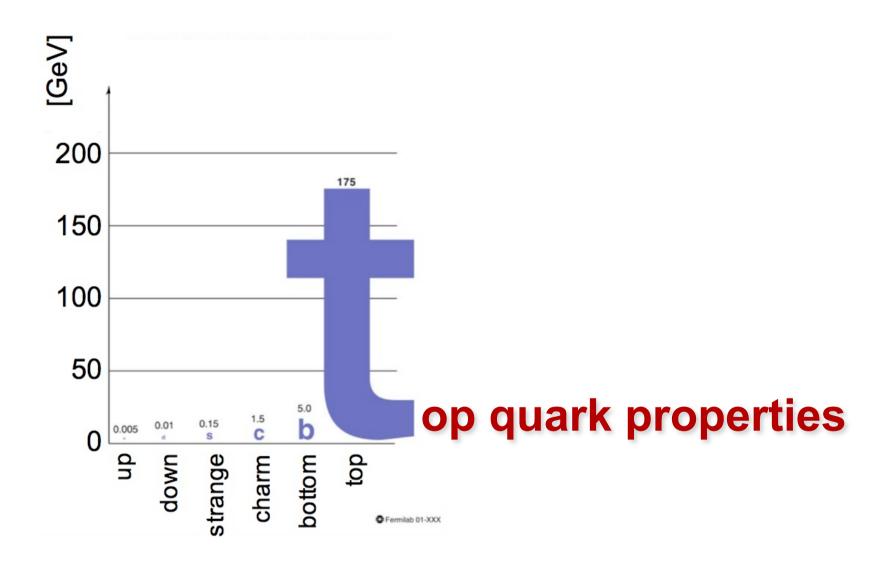




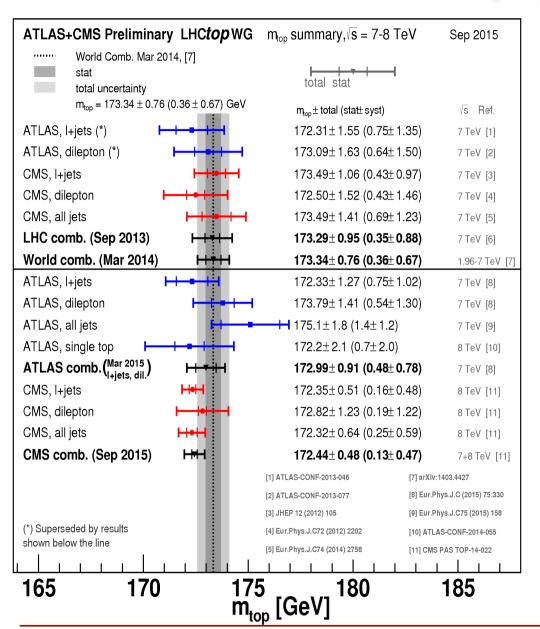

First single top differential cross sections at 13 TeV!

1 isolated μ , 2 or 3 jets, 1 or 2 b-tags


- Maximum likelihood fit to m_T(W) (for m_T(W) < 50 GeV) and MVA discriminant (for $m_{\tau}(W) > 50 \text{ GeV}$)
 - Observables in the discriminant selected to have minimum. correlation with top p_⊤ and y
- Data described by predictions within large uncertainties



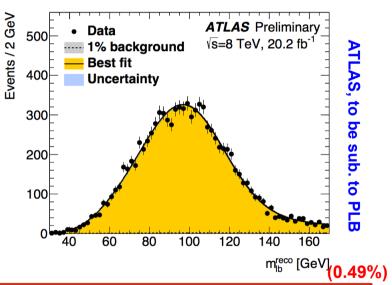
Single top production: the big picture



Ramping up towards new era of high-precision in single top

→ More in talks by J. Piedra, I. Brock

"Standard" top quark mass

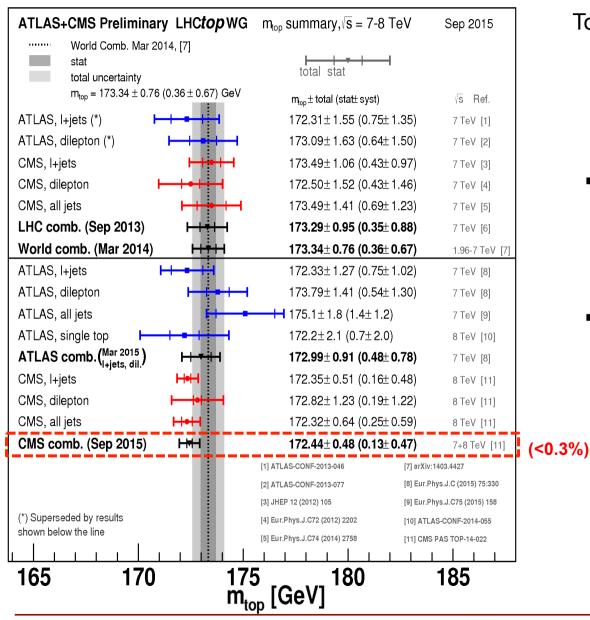


Latest result from ATLAS:

 Likelihood fit to mib distribution in dilepton events

2 leptons, \geq 2 jets, b-tagged jets, cut on p_T of the lepton-b-jet systems (p_T lb)

 $m_{\text{top}} = 172.99 \pm 0.41 \text{(stat.)} \pm 0.74 \text{(syst.)} \text{GeV}$

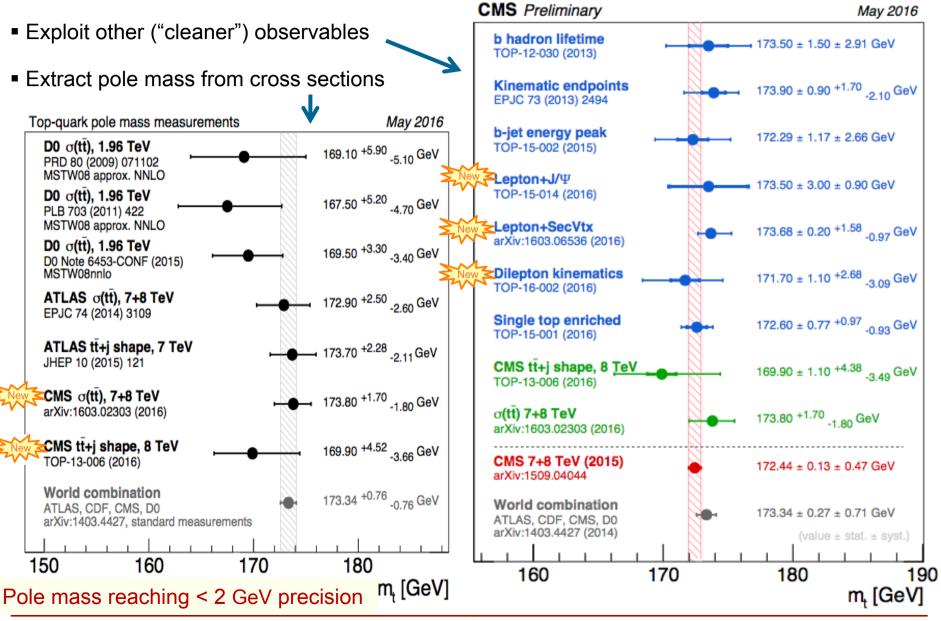

Main syst: (b)JES, hadronization, ISR/FSR

Combine with best ATLAS result:

$$m_{\text{top}}^{\text{comb}} = 172.84 \pm 0.34 \text{ (stat.)} \pm 0.61 \text{ (syst.)} \text{GeV}$$

(0.40%)

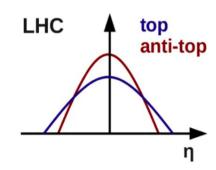
"Standard" top quark mass


Top mass results using standard (i.e, most sensitive) methods are reaching a precision of order 500 MeV (< 0.3%)

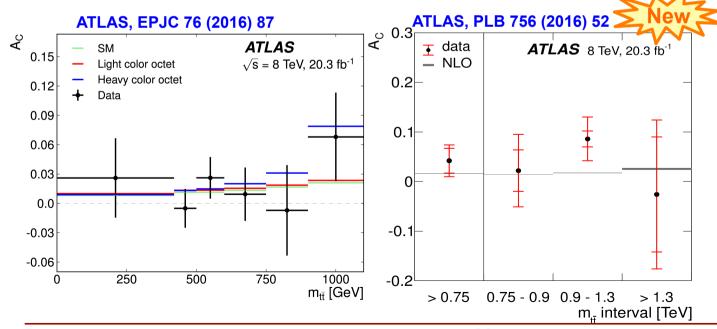
- Dominant uncertainties:
 - Jet energy response calibration
 - Hadronization modelling
- Continuous efforts to:
 - Improve current techniques
 - Develop new methods
 - Combine results

→ More in talk by J. Piedra

M. Aldaya 27 Blois, 31.05.16

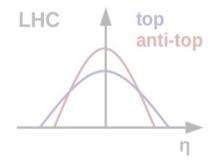

Pole mass and other alternative methods

tt charge asymmetry

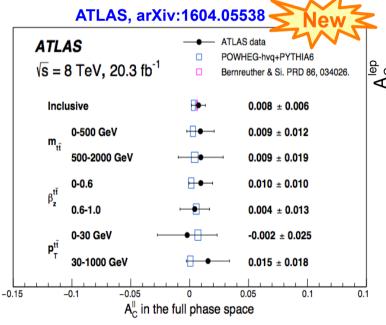

Top-pair angular production asymmetries may indicate BSM top production interfering with SM

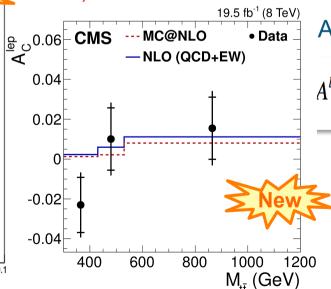
- NLO effect originating from interference of qq→tt̄ diagrams, can be enhanced by BSM physics (e.g, W', axigluon)
- LHC: top is more forward than antitop
- Several channels exploited in Run-I, also boosted top regime
- Investigate regions of phase space where charge asymmetry can be enhanced (differentially in, e.g, m(tt), p_T(tt), |y(tt)|)

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$


$$\Delta |\mathbf{y}| = |\mathbf{y}_{top}| - |\mathbf{y}_{antitop}|$$

tt charge asymmetry

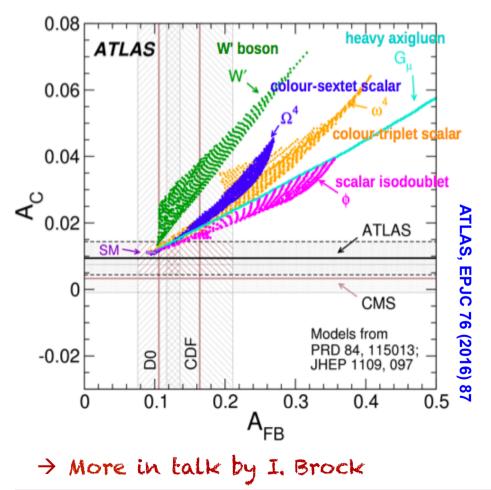

Top-pair angular production asymmetries may indicate BSM top production interfering with SM

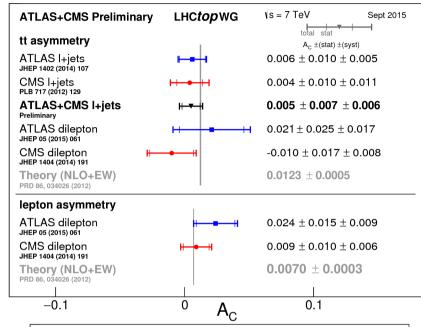

- NLO effect originating from interference of $q\bar{q} \rightarrow t\bar{t}$ diagrams, can be enhanced by BSM physics (e.g, W', axigluon)
- LHC: top is more forward than antitop
- Several channels exploited in Run-I, also boosted top regime
- Investigate regions of phase space where charge asymmetry can be enhanced (differentially in, e.g, m(tt), p_T(tt), |y(tt)|)

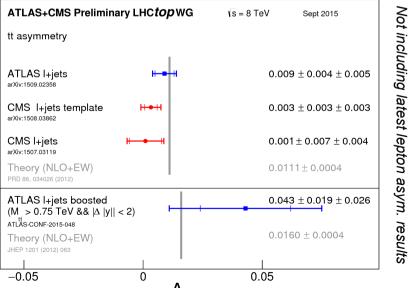
$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

 $\Delta |\mathbf{y}| = |\mathbf{y}_{top}| - |\mathbf{y}_{antitop}|$

CMS, arXiv:1603.06221


Also: lepton asymmetry

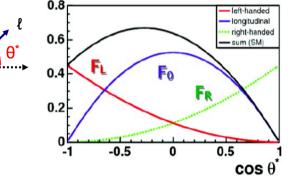

$$A^{ll}_{C} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)}$$

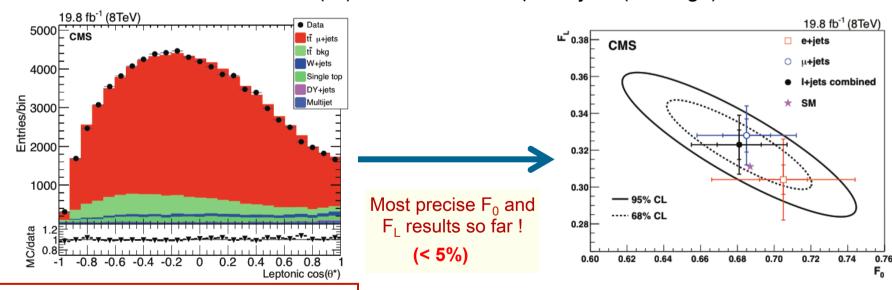

$$\Delta |\eta| = |\eta_{I^+}| - |\eta_{I^-}|$$

tt charge asymmetry: summary

- Plethora of results from ATLAS and CMS
- No significant deviation from SM
- Several BSM models can be excluded

W helicity in top decays in Run-I


CMS, to be sub. to PLB


Anomalous contributions to the tWb vertex change the probabilities of the W helicity states

■ In SM: 3 possible W helicity states (F_R+F_L+F₀ = 1):

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8} (1 + \cos\theta^*)^2 F_R + \frac{3}{8} (1 - \cos\theta^*)^2 F_L + \frac{3}{4} \sin^2\theta^* F_0$$
SM: ~0% ~30% ~70%

■ Measure sensitive variable $cos(\theta^*)$ in events with $e/\mu + 4$ jets (2 b-tags):

$$F_0 = 0.681 \pm 0.012 \text{ (stat)} \pm 0.023 \text{ (syst)}$$

$$F_L = 0.323 \pm 0.008 \text{ (stat)} \pm 0.014 \text{ (syst)}$$

$$F_R = -0.004 \pm 0.005 \text{ (stat)} \pm 0.014 \text{ (syst)}$$

Also used to place limits on anomalous couplings

Summary & outlook

- Top physics: key to QCD, electroweak and New Physics
- In Run-I, the LHC became a real "top factory"
 - Top quark production & properties measurements entered precision regime
 - First measurements of associated tt+X production
 - Started to challenge theory predictions in many respects
- First 13 TeV cross section results!
- So far, good agreement with SM predictions
- Run-II: expect 100 fb⁻¹ by end of 2018: ~80M tt, ~20M single top, ~80000 ttZ and tZ events Exciting times ahead!
 - Trade off statistics for systematics
 - Improvements in MC models and theory calculations
 - Access to new physics in the top environment

ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Additional information

CP asymmetry in tt events at 8 TeV CMS-PAS TOP-16-001

19.7 fb⁻¹ (8TeV)

0.5

Probing CP violation for the first time in tt production

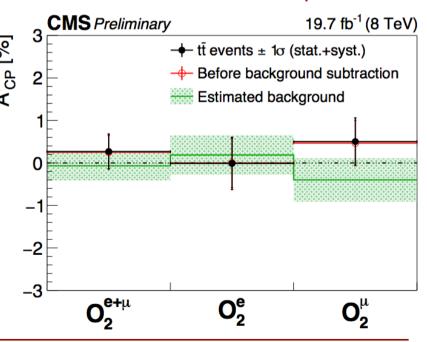
 Use observables that show asymmetry in presence of CP violation

$$A_{CP}\left(O_{i}\right) = \frac{N_{events}\left(O_{i} > 0\right) - N_{events}\left(O_{i} < 0\right)}{N_{events}\left(O_{i} > 0\right) + N_{events}\left(O_{i} < 0\right)}$$

$$O_{2} = \epsilon \left(P, p_{b} + p_{\bar{b}}, p_{\ell}, p_{j1} \right) \xrightarrow{lab} \propto (\vec{p}_{b} + \vec{p}_{\bar{b}}) \cdot \left(\vec{p}_{\ell} \times \vec{p}_{j1} \right)$$

$$O_{3} = Q_{\ell} \epsilon \left(p_{b}, p_{\bar{b}}, p_{\ell}, p_{j1} \right) \xrightarrow{b\bar{b} CM} \propto Q_{\ell} \vec{p}_{b} \cdot \left(\vec{p}_{\ell} \times \vec{p}_{j1} \right)$$

$$O_{4} = Q_{\ell} \epsilon \left(P, p_{b} - p_{\bar{b}}, p_{\ell}, p_{j1} \right) \xrightarrow{lab} \propto Q_{\ell} \left(\vec{p}_{b} - \vec{p}_{\bar{b}} \right) \cdot \left(\vec{p}_{\ell} \times \vec{p}_{j1} \right)$$

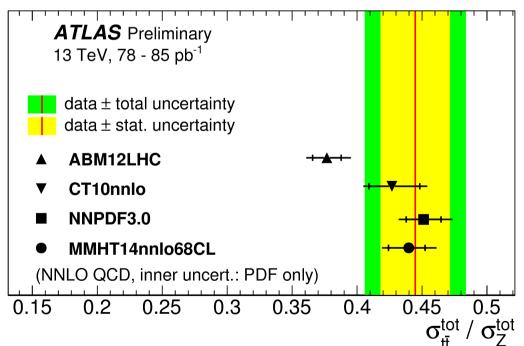

$$O_{7} = q \cdot \left(p_{b} - p_{\bar{b}} \right) \epsilon \left(P, q, p_{b}, p_{\bar{b}} \right) \xrightarrow{lab} \propto \left(\vec{p}_{b} - \vec{p}_{\bar{b}} \right)_{z} \left(\vec{p}_{b} \times \vec{p}_{\bar{b}} \right)_{z}$$

Measurement in the I+jets channel

Selection: 1 e/ μ , \geq 4 jets, 2 b-tags

Preliminary 18 Preliminary 16 SM non-tī SM non-tī To, Stat.+Syst.

No deviation from SM expectation:


tt cross section ratios

Ratios of cross sections are expected to cancel out some of the systematic uncertainties

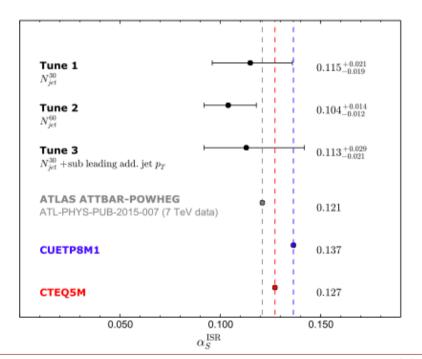
- → Comparison to theory: potential to constrain PDFs, sensitive to BSM effects
- tt/Z ratio: testing the gg/qq ratio
 - Reduces luminosity uncertainty (10% \rightarrow 1%), electron ID (3.2% \rightarrow 1.3%)

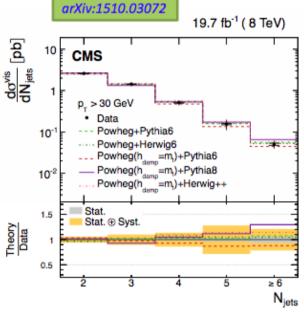
$$R_{t\bar{t}/Z} = 0.445 \pm 0.027 \text{ (stat)} \pm 0.028 \text{ (syst)} = 0.445 \pm 0.039$$

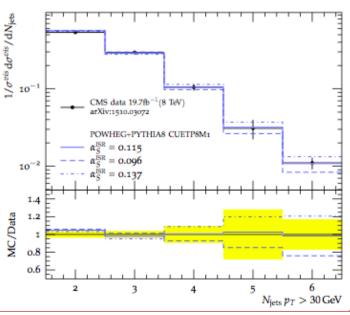
- General good agreement between data and different PDF
 - ABM12LHC uses smaller gluon density

Run-II: potential to explore different ratios, also at different energies, to constrain further PDFs

Differential cross sections: fixed order calculations

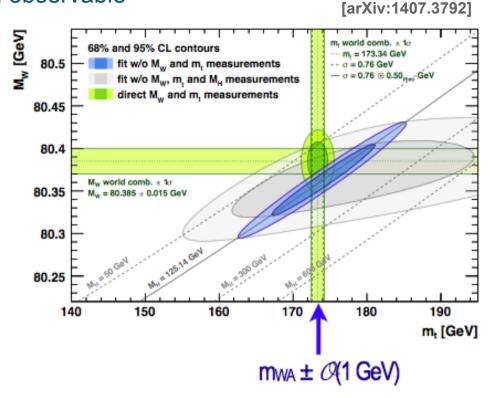

- · approx. NNLO DiffTop, S.Moch et al
 - the uncertainty is the full theory uncertainty, obtained by adding in quadrature PDF and α_S uncertainties
 - * scale uncertainty (simultaneous variation of ren. and fact. scales by factors 2 and 0.5; the scale is set to mt= 172.5 GeV)
 - variation of m_t by +-1 GeV
- approx. N³LO N.Kidonakis
 - the uncertainty is only the scale uncertainty simultaneous variation of ren. and fact. scales by factors 2 and 0.5
 - the scale is set to m_t = 172.5 GeV).
- NLO+NNLL', B.Pecjak et al.
 - the uncertainty is only the scale uncert, where the factorization scale μ_F is:
 - for pT(top): μ_F = m_T = sqrt(m_t² + p_T(top)²), and it is varied by factors 2 and 0.5
 - for m(ttbar): µ_F = m(ttbar)/2, and it is varied by factors 2 and 0.5
- NNLO, A.Mitov et al.
 - the uncertainty is only the scale uncertainty. The scale (dynamic) is:
 - for $p_T(top)$: $\mu = m_T/2$ (varied by factors 2 and 0.5)
 - for y(top), pT(ttbar), m(ttbar), y(ttbar): µ = H_T/4


Shower α_s tuning


 Discrepancies at high Njets → e.g. non-optimal parton shower α_s.

 Use N_{jets} > 3 where jets predominantly originate from the parton shower.

Rivet routine: CMS_2015_I1397174

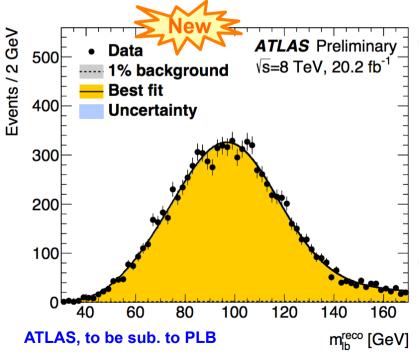


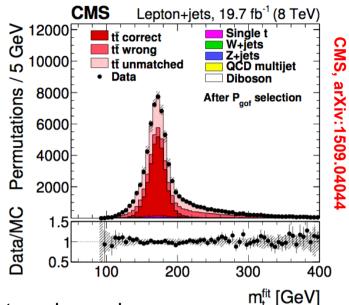
Top quark mass

Fundamental parameter in the SM, not an observable

→ scheme-dependent

- Pole mass: top quark as free parton
- Other schemes, e.g, running mass
- MC mass (mass as defined in MC)
- Difference between 'direct' MC mass and pole mass estimated to be O(1) GeV
- 'Direct' mass measurements:
 - Reconstruct m_{top}(rec) and extract m_{top}(MC)
 - Experimentally most precise, limited by
 - flavour-dependent jet energy uncertainties
 - modelling of hadronization


'Alternative' methods:


- Use experimentally cleaner observables (i.e, no jets)
- Use theoretically calculable observables with some sensitivity to the top mass

High precision top mass measurements

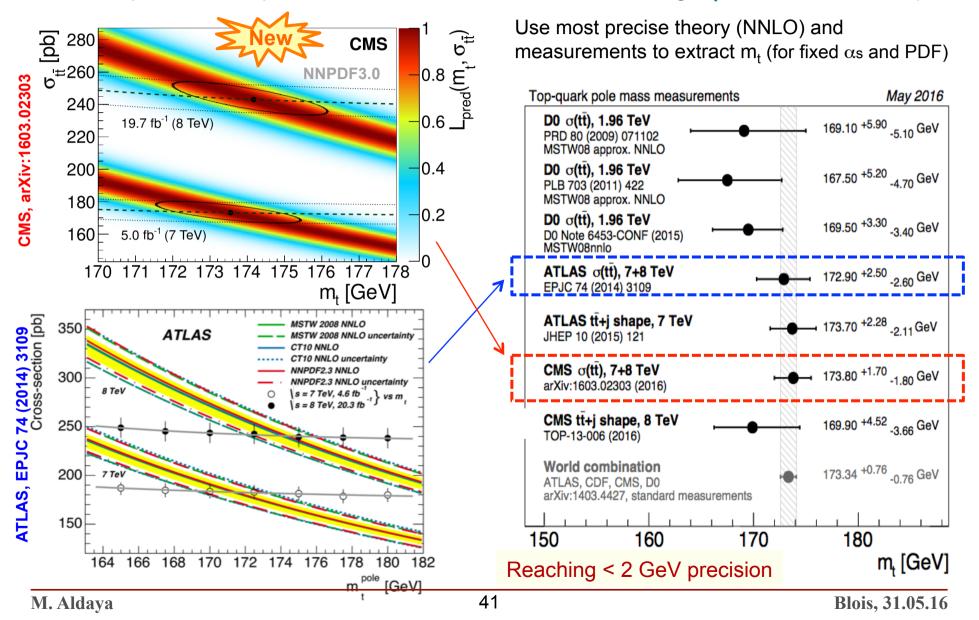
- CMS: I+jets channel: $1 \mu/e$, ≥ 4 jets, 2 b-tags
 - 2D likelihood fit to extract m_{top} and light-quark jet energy scale from W-mass constraint
 - All different jet permutations are taken into account

Main syst: bJES, b hadron decay modelling

- ATLAS: dilepton channel
 - 2 leptons, \geq 2 jets, b-tagged jets, cut on p_T of the lepton-b-jet systems ($p_T lb$)
 - Likelihood fit to mlb distribution

$$m_{\text{top}} = 172.99 \pm 0.41 \text{(stat.)} \pm 0.74 \text{(syst.)} \text{GeV}$$
 (0.49%)

Main syst: (b)JES, hadronization, ISR/FSR


■ Combine with 7 TeV result (I+jets,dileptons): ATLAS, EPJC 75 (2015) 330

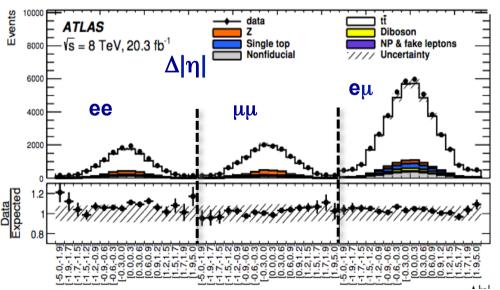
$$m_{\text{top}}^{\text{comb}} = 172.84 \pm 0.34 \text{ (stat.)} \pm 0.61 \text{ (syst.)} \text{GeV}$$
 (0.40%)

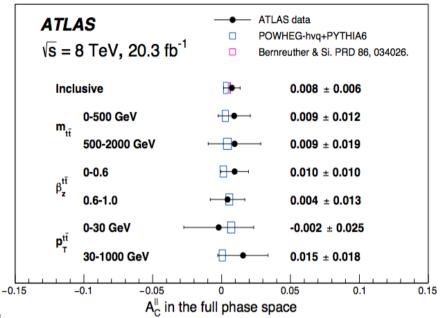
M. Aldaya 40 Blois, 31.05.16

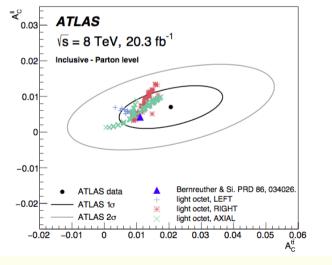
Top pole mass from $\sigma(tt)$

Mass dependence of predicted cross section allows determining m_t from measured $\sigma(tt)$

Asymmetry in dileptons at 8 TeV ATLAS, arXiv:1604.05538


Alternative approach: lepton asymmetry


• Sensitive to top polarization, no tt kinematic reconstruction needed

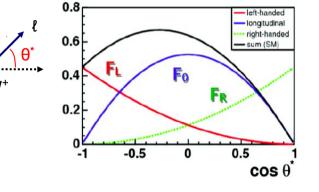

$$A^{ll}_{C} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)}$$

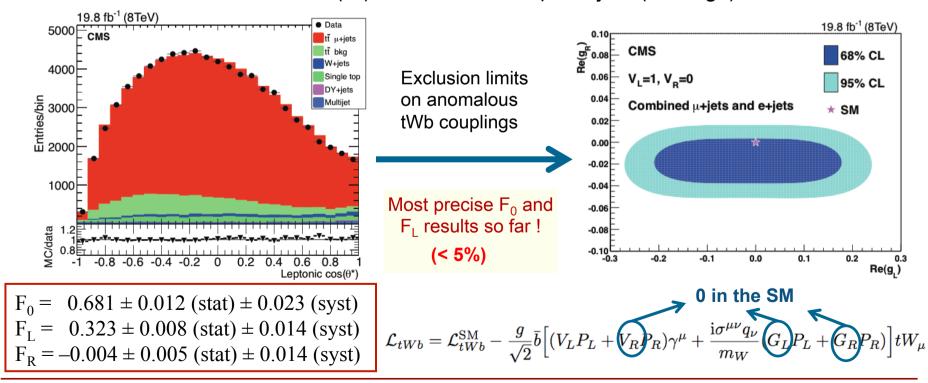
$$\Delta |\eta| = |\eta_{I+}| - |\eta_{I-}|$$

Selection: 2 leptons, ≥ 2 jets & ≥1 b-tag (ee,μμ) or large H_⊤ (eμ)

Consistent with SM, limited by stat. uncertainties

W helicity in top decays in Run-I


CMS, to be sub. to PLB

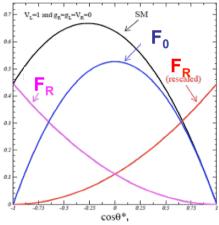

Anomalous contributions to the tWb vertex change the probabilities of the W helicity states

■ In SM: 3 possible W helicity states (F_R+F_L+F₀ = 1):

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8} (1 + \cos\theta^*)^2 F_R + \frac{3}{8} (1 - \cos\theta^*)^2 F_L + \frac{3}{4} \sin^2\theta^* F_0$$
SM: ~0% ~30% ~70%

■ Measure sensitive variable $cos(\theta^*)$ in events with $e/\mu + 4$ jets (2 b-tags):

W helicity in top decays in Run-I


CMS, to be sub. to PLB

- Measurement is affected by two aspects:
 - Distortions due to detector effects: resolution, acceptance, ...
 - Generalizing the generator level polarization to any scenario
- Weighting procedure is used:

• Weighting procedure is used:
$$w_{\rm lep/had/single-t}(\cos\theta_{\rm gen}^*;\vec{F}) \equiv \frac{\frac{3}{8}F_{\rm L}(1-\cos\theta_{\rm gen}^*)^2 + \frac{3}{4}F_0\sin^2\theta_{\rm gen}^* + \frac{3}{8}F_{\rm R}(1+\cos\theta_{\rm gen}^*)^2}{\frac{3}{8}F_{\rm L}^{\rm SM}(1-\cos\theta_{\rm gen}^*)^2 + \frac{3}{4}F_0^{\rm SM}\sin^2\theta_{\rm gen}^* + \frac{3}{8}F_{\rm R}^{\rm SM}(1+\cos\theta_{\rm gen}^*)^2}{\frac{3}{8}F_{\rm L}^{\rm SM}(1-\cos\theta_{\rm gen}^*)^2 + \frac{3}{4}F_0^{\rm SM}\sin^2\theta_{\rm gen}^* + \frac{3}{8}F_{\rm R}^{\rm SM}(1+\cos\theta_{\rm gen}^*)^2}$$

SM prediction used at generator level ▶

The fractions F_0 , F_1 and F_R are extracted using a binned likelihod fit to cos θ^*

$$\mathcal{L}(\vec{F}) = \prod_{bin\ i} \frac{N_{MC}(i; \vec{F})\ N_{data}(i)}{(N_{data}(i))!} \exp\left(-N_{MC}(i; \vec{F})\right) \left[\begin{array}{ccc} N_{MC}(i; \vec{F}) & = & N_{BKG}(i) + N_{t\bar{t}}(i; \vec{F}) \\ N_{t\bar{t}}(i; \vec{F}) & = & \mathcal{F}_{t\bar{t}} \left[\sum_{t\bar{t}\ avente\ bin\ i} W(\cos\theta_{gen}^*; \vec{F})\right] \end{array}\right]$$

$$N_{\text{MC}}(i, \vec{F}) = N_{\text{BKG}}(i) + N_{\text{t\bar{t}}}(i; \vec{F})$$

$$N_{\text{t\bar{t}}}(i; \vec{F}) = \mathcal{F}_{\text{t\bar{t}}} \left[\sum_{\text{t\bar{t} events, bin } i} W(\cos \theta_{gen}^*; \vec{F}) \right]$$