

Baryonic Acoustic Oscillation Correlations at z=2.3 with SDSS-III Lyman-α Forests

Hélion du Mas des Bourboux

\rightarrow introduction to BAO and BOSS

\rightarrow Lyman- α BAO

Hélion du Mas des Bourboux

BAO

(Baryonic Acoustic Oscillations)

Hélion du Mas des Bourboux

BAO

To understand what is Dark Energy we need to measure distances at different redshifts

BAOs measure the expansion rate and angular diameter distance at a given redshift

Hélion du Mas des Bourboux

Measuring the BAO scale

Measuring the BAO scale

Hélion du Mas des Bourboux

Quasar flux originates from the surrounding of a super-massive black hole

Spectrum of a BOSS Quasar at redshift z = 3.35, the Universe was only 2 billion years old

Hélion du Mas des Bourboux

Get redshift from emission lines

A Quasar is a boolean matter density tracer

Hélion du Mas des Bourboux

Lyman-α forest

Absorption lines from Hydrogen continuum in the Intergalactic Medium (IGM)

A Lyman-α pixel gives a continuous matter density tracer

Lyman-α forest Normalized Data + correction Matter density fluctuation $\frac{f_{\alpha,i}}{C_{\alpha}(\lambda_{R.F.}).\bar{F}(\lambda_{Obs.})}$ • $\delta_{lpha,i}$ 1 Sky + cosmology $\frac{\lambda_{Obs.,i}}{1215.67} - 1$ physics $z_{lpha,i}$ **QSO** physics 3.0 QSO continuum Data2.5 2.0 $\phi(\lambda_{R.F.})$ 1.0 0.5 01840 1060 1080 1120 1140 1160 1180 1200 1100 $\lambda_{R.F.}$ [Å] Hélion du Mas des Bourboux Rencontres de Blois 2016

12/34

Two matter density tracers

- We have two matter density tracers:
 - Quasars
 - Lyman-α forest
- We can estimate two different correlation functions

BOSS

(Baryon Oscillation Spectroscopic Survey)

Hélion du Mas des Bourboux

Quasar

List of targets from photometry sent to the BOSS spectrograph.

- Sloan Digital Sky Survey (SDSS)
- 2.5-m wide-angle optical telescope
- Spectroscopy with the Baryonic Oscillation Spectroscopic Survey (BOSS)
- 1000 fibers
- Run: 2009-2014

Hélion du Mas des Bourboux

Hélion du Mas des Bourboux

Hélion du Mas des Bourboux

Lya BAO Results

Hélion du Mas des Bourboux

Auto-correlation

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

0.3

0.2

0.1

-0.3

-0.4

 $r^2\xi(r)[\mathrm{h}^{-2}\mathrm{Mpc}^2]$

Hélion du Mas des Bourboux

22/34

Gaussian Random Field Simulations

Lyα forest along the line-of-sight <

Apply telescope properties

IGM image provided by Julien Baur

Hélion du Mas des Bourboux

Gaussian Random Field Simulations

Cross-correlation

Hélion du Mas des Bourboux

BAO Results

Radial BAO

$$\alpha_{\parallel} = \frac{D_H(\overline{z})/r_d}{[D_H(\overline{z})/r_d]_{fid}}$$

Transverse BAO

Angular size

Hélion du Mas des Bourboux

Hubble scale factor

BAO Results

 Auto-correlation DR12: (JB++ in prep.) $\chi^2/dof = 1630.43/(1589$ $lpha_{\parallel} = 1.028 \pm 0.028 \\ lpha_{\perp} = 0.983 \pm 0.048$ Cross-correlation (DR12: (HdMdB++ in prep.)) 5.24/(3030-14) χ^2/dof ± 0.032 $.913 \pm 0.038$ 147.3 Mpc) (km 66 64 62 Γ_d H(z)/(1+z) * 58 56 L 0.5 2.5 1.0 1.5 2.0 redshift. z Hélion du Mas des Bourboux Rencontres de Blois 2016

BAO Results

• Auto-correlation DR12: (JB++ in prep.)

$$\chi^2/dof = 1630.43/(1589 - 10)$$

 $\alpha_{\parallel} = 1.028 \pm 0.028$
 $\alpha_{\perp} = 0.983 \pm 0.048$

Cross-correlation DR12: (HdMdB++ in prep.)

$$\chi^{2}/dof = 3115.24/(3030 - 14)$$

$$\alpha_{\parallel} = 1.045 \pm 0.032$$

$$\alpha_{\perp} = 0.913 \pm 0.038$$

Hélion du Mas des Bourboux

Improvements

- Better model for contamination by carbon, silicon ...
- Better model for the distortion caused by continuum fitting
- Better data-reduction and calibration
- Better understanding of spurious correlations induced by instrument/data-reduction
- First simulations of the cross-correlation.

Conclusion

- A ~ 2.8 % measurement of the expansion rate at z = 2.3.
- Robust measurement against systematics
- First simulations of the cross-correlation.

Hélion du Mas des Bourboux

BACKUP slides

Hélion du Mas des Bourboux

Gaussian Random Field Simulations

Metal templates

