

Precision Measurements of Electroweak Parameters with Z Bosons at the Tevatron ($\sin^2\theta_{eff}^{lept}$, $\sin^2\theta_{W}^{on-shell}$, $M_{w}^{indirect}$)

Gregorio Bernardi,

LPNHE Paris

On behalf of CDF and D0

Blois 1/6/16

Thanks to all CDF & D0 colleagues

References

Dilepton forward-backward asymmetry of DY leptons $\rightarrow sin^2\theta_{eff}^{leptonic}$

- 1. DØ e+e- (9.7 fb-1) Phys. Rev. Lett. 115, 041801(2015)
 - \rightarrow sin² $\theta_{eff}^{leptonic}$ (Mz)
- 2. CDF $\mu+\mu$ (9.2 fb-1) Phys. Rev. D89, 072005(2014: CDF e+e- + $\mu+\mu$ (9.4 fb-1) submitted to Phys Rev D 2016
 - $\rightarrow \sin^2\theta_{\text{eff}}^{\text{leptonic}}$ (Mz) & $\sin^2\theta_{\text{eff}}^{\text{on-shell}}$, M_w Indirect

See also A. Bodek et al arXiv:1507.02470

New method: PDF Constraints from Drell-Yan AFB

Tevatron Unique Dataset

- Different collision energy, $\sqrt{s}_{
 m eff}$
 - Cross sections
 - Different (QCD) backgrounds
- $par{p}$ collisions instead of pp
 - asymmetries; e.g., top, electroweak

 Top quark forward-backward asymmetries:

- is an initial CP invariant state (B physics)
- Complementary! Production processes different mix of $q\bar{q}$ vs. gg collisions
 - t ar t spin correlations

Well understood detector
(plus lower level of pileup, only getting worse at LHC)

- W boson mass
- top quark mass

Electroweak measurements, W production, asymmetries

Tevatron: dominated by valence quark production

LHC: dominated by sea quark and gluon production

Measurement @Tevatron places stringent constraints on the PDFs

Lepton asymmetry: convolution of the W boson charge asymmetry and the V-A decay of the W boson.

Lepton and W boson Charge Asymmetry

Full D0 dataset (9.7 fb⁻¹), electron channel

Lepton Charge Asymmetry:

Significant gain in precision and in η coverage Most precise measurement of lepton charge asymmetry to date

W boson production asymmetry:

Potential improvement of PDF models in the $x-Q^2$ region of interest for W production at Tevatron \rightarrow will reduce the current PDF uncertainty in the W mass measurement by approximately 30% (down to 2-3 MeV)

Measuring $\sin^2\theta_w$ and W mass (indirectly) using Z's

- Experimentally interesting situation
- In the SM: $\sin^2 \theta_W = 1 m^2_W / m^2_7$ $\sin^2 \theta_{\rm W}$ indirectly measures m_W
- Derive $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ from angular distribution of eptons in Drell-Yan ($Z/\gamma * \rightarrow I^+I^-$) events.

$$\frac{dN}{d\theta} \approx 1 + \cos^2 \theta + A_4 \cos \theta$$

Forward-backward asymmetry

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{3}{8}A_4$$

- Measurement A_{FR} → sin² θ_{eff} lept
- (effective Z/lepton coupling)

$$sin^2\theta_{eff}^{\ lept} \ \simeq 1.037 \, \bullet \, sin^2\theta_W^{\ } \ \ [\ ZFITTER \, \kappa_e^{\ } (sin^2\theta_W^{\ }, M_Z^{\ }) \, form \, factor \,]$$

$$\rightarrow \sin^2 \theta_W \rightarrow m_W$$

DØ e⁺e⁻ 9.7 fb⁻¹ sin²θ_{eff} lept analysis

- two electrons with p_T > 25 GeV
- Tight track match requirement
- CC ($|\eta|$ <1.1) and EC (1.5< $|\eta|$ <3.2)
- Use 75<M_{ee}<115 GeV \rightarrow 560k events
- New Lepton energy calibration
- Apply scale factor as a function of L_{inst} first then as a function of η
- M_{ee} peak scaled to Z-LEP value in each bin
- Separate calibrations for data and MC

DØ e⁺e⁻ 9.7 fb⁻¹ sin²θ_{eff}^W analysis

Corrections are applied to MC to account for:

- Smearing of electron energy
- Efficiency corrections in pT(e), η(e)
- L_{inst} and z_{PV} reweighting to match data
- Higher order effects: NNLO Z pT and y to match RESBOS
- Produce 2D templates of M_{ee} and $\cos\theta^*$ by reweighing default MC ($\sin^2\theta_{eff}$ =0.232) as a function of $\sin^2\theta_{eff}$

Extract $sin^2\theta_{eff}$ by fitting raw AFB to templates with different $sin^2\theta_{eff}$ values

 No unfolding: MC is carefully corrected to describe the data

 $\sin^2\theta_{\rm eff}$ = 0.23138 ± 0.00043(stat) ± 0.00008(syst) ± 0.00017(NNPDF2.3 PDFs) (no EW radiative corrections)

D0: Phys. Rev. Lett. 115, 041801 (2015)

DØ e⁺e⁻ 9.7 fb⁻¹ sin²θ_{eff}^W analysis

An approximate way to correct for the flavor dependence of $\sin^2 \theta_{\text{eff}}$ from EW radiative corrections is used by the D0 collaboration. This is done by making the following corrections (proposed by Baur and collaborators [8]):

$$\sin^2 \theta_{\text{eff}}^{\text{u-quark}} = \sin^2 \theta_{\text{eff}}^{\text{lept}} - 0.0001$$

$$\sin^2 \theta_{\text{eff}}^{\text{d-quark}} = \sin^2 \theta_{\text{eff}}^{\text{lept}} - 0.0002$$

Change is +0.00008

Final results :DØ ee

$$\sin^2\theta_{eff}$$
 leptonic (Mz)

$$= 0.23146 \pm 0.00043$$
 (statistical)

$$\pm$$
 0.0008 (systematics)

$$\pm$$
 0.00017 (PDFs NNPDF2.3 NLO)

$$= 0.23146 \pm 0.00047$$
 (total)

CDF $\mu^+\mu^-$ & e⁺e⁻ 9.7 fb⁻¹ sin² $\theta_{eff}^{\ W}$ analysis / indirect M_W

Main improvements are in 4 areas:

Since $\sin^2\theta_W$ is constant while $\sin^2\theta_{eff}$ lept (M_{ee},flavor) is not. Implement Full ZFITTER EW radiative corrections,

→ Enhanced Born Approximation (EBA), include full complex form factors implemented in private versions of RESBOS, POWHEG, and LO. *Ref Phys. Rev. D 88, 072002 (2013) Appendix A'.*

Precise lepton momentum/energy scale for muons and electrons using a new method- (will also reduce scale error for Mw measurement)

Ref: A. Bodek et al. Euro. Phys. J. C72, 2194 (2012)

Use event weighting method for AFB analyses (systematic errors in acceptance and efficiencies cancel)

Use Drell-Yan forward-backward asymmetry to constrain parton distribution functions - (will also reduce PDF errors for Mw measurement)

Ref A. Bodek et al arXiv:1507.02470v2 (2015)

Implement ZFITTER EBA EW radiative corrections

 $\sin^2\theta_W$ (on-shell) is a constant while $\sin^2\theta_{eff}$ lept (M_{ee},flavor) is not. Full ZFITTER EW radiative corrections, Enhanced Born Approximation (EBA), include full complex form factors implemented in private versions of RESBOS, POWHEG, and LO) \rightarrow Phys. Rev. D 88, 072002 (2013) Appendix A'

$$g_V^f\gamma_\mu+g_A^f\gamma_\mu\gamma_5.$$
 The Born-level couplings are
$$g_V^f=T_3^f-2Q_f\,\sin^2\theta_W$$

$$g_A^f=T_3^f,$$

They are modified by ZFITTER 6.43 form factors (which are complex)

$$g_V^f o \sqrt{\rho_{eq}} (T_3^f - 2Q_f \kappa_f \sin^2 \theta_W), \text{ and}$$
 $SM(\sin^2 \theta_W) \overset{EWK}{\longmapsto} \sin^2 \theta_{eff}(s) \overset{QCD}{\longleftrightarrow} A_4(s),$ $g_A^f o \sqrt{\rho_{eq}} T_3^f,$ AFB = (3/8) A4

- T_3 and sin²θ_w → effective T_3 and sin²θ_w: 1-4% multiplicative form factors
- On-mass shell scheme: $\sin^2\theta_w \equiv 1 M_w^2/M_z^2$ to all orders

Accounts for $\sin^2\theta_{\text{eff}}$ dependence on quark flavor and dilepton mass \rightarrow get $\sin^2\theta_{\text{eff}}$ leptonic (Mz) using A_{FB} over a range of dilepton mass

Precise Energy/Momentum Scale corrections

New technique used for both $\mu+\mu$ - and e+e- for both data and hit level MC

- 1 : Remove the correlations between the scale for the two leptons by getting an initial calibration using Z events and requiring that the mean <1/PT> of each lepton in bins of η , Φ and charge be correct.
- 2: Use the Z mass for calibration. The Z mass as a function of η , Φ , (and charge for μ + μ -) of each lepton must be correct
- Reference for electrons: expected Z mass (post FSR + clustered FSR photons), smeared by resolution (with acceptance cuts).
- Reference for muons: expected Z mass (post FSR) smeared by resolution (with acceptance cuts).

Use event weighting Method

Event weighting method for A_{FB} analyses $dN/d\cos\theta = 1+\cos^2\theta + A_0(M,P_T) (1-3\cos^2\theta)/2 + A_4(M) \cos\theta$

Angular event weighting is equivalent to extraction of $A_4(M)$ in bins of cos θ , and averaging the results.

Events at large $\cos\theta$ provide better determination of A_4 , so they are weighted more than events at small $\cos\theta$.

For each $\cos\theta$ acceptance and efficiencies cancel to first order and the statistical errors are 20% smaller. Then extract A_{FB} =(3/8) A_4

Event weighting does not correct for resolution smearing and final state radiation, which are included later in the unfolding.

Benefits from event weighting Method

The error in A_{FB} is reduced if we have more acceptance at large $\cos\theta$, Standard A_{FB} method requires precise knowledge of acceptance and efficiencies. Measure $A_{4} \rightarrow A_{FB}$

Unfolding/corrections in CDF e+e- analysis

e+e-: A_{FB} Background subtracted Raw no corrections

e+e-: A_{FB} unfolded, fully corrected

CDF e^+e^- : $sin^2\theta_w$ extraction using templates

- Comparison χ^2 : $\Sigma_M \Delta A_{fb}(M)^{\sim} \bullet E \bullet \Delta A_{fb}(M)$
 - Measurement: Fully corrected A_{fb}(M)
 - Calculated templates: $A_{fb}(M, \sin^2\theta_w)$ for 16 values of $\sin^2\theta_w$
 - E: Measurement error matrix
- Extraction of $sin^2\theta_w$ from the scan points
 - Fit $\chi^2(\sin^2\theta_w)$ scan points to a parabola: $\chi^2_{min} + (\sin^2\theta_w \sin^2\theta_{w\,min})^2/\sigma_{min}^{-2}$
 - Assign each scan point $\chi^2(sin^2\theta_w)$ an error of 0.1 in the parabolic fit
 - $(\sin^2\theta_{w \, min}^{}$, $\sigma_{min}^{})$ are the fit values of $\sin^2\theta_{w}^{}$ and its uncertainty
 - $-\chi^2_{min}$ = minimum $\chi^2(\sin^2\theta_w)$ at $\sin^2\theta_{w min}$ for 15 mass bins

This analysis is repeated with

1. POWEG ,2. RESBOS 3. Tree-Level LO

For the POWHEG analysis, the extraction is repeated for all 100 NNPDF3.0 Replicas to get PDF uncertainty

Indirect measurement of W mass

M_w also can be determined indirectly via the relation

 $\sin^2\theta_W^{\text{on-shell}} = 1 - M_W^2 / M_z^2$

 ± 0.00040 error in $\sin^2\theta_W$ is equivalent to ± 20 MeV error in M_W (indirect)

Both $\sin^2\theta_W^{\text{on-shel}}$ and $\sin^2\theta_{\text{eff}}^{\text{leptonic}}$ (Mz) can be extracted from Drell-Yan forward-backward asymmetry (Afb) if we include EW radiative corrections.

 \rightarrow M_Windirect can be extracted from sin² θ_W on-shell

If the SM is correct, then both direct and indirect measurements of M_W should agree. Deviations may imply the possibility of new physics.

Similarly different measurements of $\sin^2\theta_{eff}^{leptonic}$ (Mz) should also agree and deviations may imply new physics.

•

CDF and DØ results

Differences between D0 and CDF Analyses

- 1. CDF uses NNPDF 3.0 PDFs (NNLO) which include LHC data and supersede the NNPDF2.3 (NLO) used by D0
- 2. CDF uses full EBA EW rad correction. D0 uses partial Zgrad EW rad corr. Need to resolve these issues before the two results can be combined.

W Mass direct Measurement

 Tevatron Combination based on CDF (2.2 fb⁻¹) and D0 (5.1 fb⁻¹) results:

$$M_w = (80387 \pm 16) \text{ MeV}$$

- → 0.02% precision! dominates the World combination (15 MeV)
- Full-data results from both CDF and D0 in progress → further reduction of uncertainties
 - Statistics gain → energy scale uncertainty
 - Extension to forward leptons and PDF improvements will allow significant gain
- Target 10 MeV world average with new CDF and D0 measurements using full statistics.
- Consistency check of the SM (top-W-Higgs)

Top, and W Direct Mass Measurements

Direct and Indirect W mass measurements

Direct measurements:

Waiting for update from CDF and D0 on full dataset (currently 2 and 5 fb⁻¹)

Indirect measurements:

CDF Mw 24 MeV indirect Mw uncertainty is similar to CDF M_W 19 MeV direct Mw uncertainty

Conclusions / Tevatron Legacy

- The CDF and DZero collaborations are still producing competitive physics results in particular in the electroweak sector
- Currently the Tevatron direct (L= 2.2 fb-1) and indirect (L=9.4 fb-1) measurements of Mw have similar errors. (~ 20 MeV per experiment)
- Tevatron Run II Legacy measurements of sin²θ_w and Mw indirect are in agreement with SM predictions from M_H and M_{top}, and with direct measurement of M_W
- A_{FB}(M) data can also be used to put additional constraints on PDFs. These constraints will help reduce PDF errors in the ongoing Tevatron Run II Legacy (L=9.4 fb-1) direct measurement of Mw.

