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Scalar particle at LHC: very special universe!

Higgs boson mass

mH = 125.09± 0.21± 0.11GeV

Now it's possible to study the SM

potential up to the Planck scale

ATLAS, Phys.Lett.B 716(2012) 1-29 CMS, Phys.Lett.B 716(2012) 30

28th Rencontres de Blois, 1st June 2016
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Stability and metastability

Higgs doublet (unitary gauge)

HT =
(

0 (φH + v)/
√

2
)

v = 1/(
√

2Gµ)1/2 ' 246GeV

SM Higgs potential

V0(φH) =
λH
6

(
|H|2 − v2

2

)2

∼ λH
24
φ4
H

λφ4, in�ection point, plateau, . . . Degenerate vacua
(Froggatt-Nielsen)

Tunneling rate τ > τuniverse

28th Rencontres de Blois, 1st June 2016
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Vacuum stability diagram

Masina, Talk in Padua(2014)

m̄running
t (µ) = yt(µ)

v√
2

=

= mpole
t (1 + δt(µ))

Alekhin, Djouadi, Moch,
Phys.Lett.B 716(2012) 214

Extracted from the total
cross-section pp̄→ tt̄+X

Comparison rule:
mpole
t ≈ m̄t + 10GeV

The two methods agree:
Masina, PRD 87(2013) 053001

28th Rencontres de Blois, 1st June 2016
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Vacuum stability diagram

Masina, Talk in Padua(2014)

m̄running
t (µ) = yt(µ)

v√
2

=

= mpole
t (1 + δt(µ))

Alekhin, Djouadi, Moch,
Phys.Lett.B 716(2012) 214

Extracted from the total
cross-section pp̄→ tt̄+X

Comparison rule:
mpole
t ≈ m̄t + 10GeV

The two methods agree:
Masina, PRD 87(2013) 053001
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Experimental constraints (2000)

Masina, Talk in Padua(2014)
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Experimental constraints (2011)

Masina, Talk in Padua(2014)
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Experimental constraints (2012)

Masina, Talk in Padua(2014)

Is Nature trying to tell us something?

28th Rencontres de Blois, 1st June 2016
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Calculation: some formulæ

Extrapolating the Higgs potential at high energies:
RGE evolution of the couplings (assuming �desert�)

The e�ective potential must be independent of µ:(
µ
∂

∂µ
+ βi

∂

∂λi
− γ ∂

∂φ

)
Ve� = 0 ,

βi = µ
dλi
dµ

, γ = −µ
φ

dφ

dµ

The formal solution of the RGE is

Ve�(µ, λi, φ) = Ve�(µ(t), λi(t), φ(t)) ,

µ(t) = etµ , φ(t) = eΓ(t)φ , Γ(t) = −
∫ t

0

dt′γ(λ(t′))

t can be chosen in order to make φ(t)/µ(t) ∼ O(1)
Our choice: µ = mt

28th Rencontres de Blois, 1st June 2016
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Calculation: some formulæ

Extrapolating the Higgs potential at high energies:
RGE evolution of the couplings (assuming �desert�)

The e�ective potential must be independent of µ:(
µ
∂

∂µ
+ βi

∂

∂λi
− γ ∂

∂φ

)
Ve� = 0 ,

βi = µ
dλi
dµ

, γ = −µ
φ

dφ

dµ

The formal solution of the RGE is

Ve�(µ, λi, φ) = Ve�(µ(t), λi(t), φ(t)) ,

µ(t) = etµ , φ(t) = eΓ(t)φ , Γ(t) = −
∫ t

0

dt′γ(λ(t′))

t can be chosen in order to make φ(t)/µ(t) ∼ O(1)
Our choice: µ = mt
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Matching low-energy parameters at NNLO

Updating the results in literature:
Bednyakov et al., PRL 115(20) (2015) 201802

Gauge couplings (g3 in particular) matching is performed at
mZ and it is dominated by

α
(5)
s = 0.1181± 0.0013 (error doubled)

Uncertainty on λ is dominated by uncertainty on Higgs mass
and theoretical errors in the matching procedure
(scale variation and truncation)

λ(mt) ' 0.7554 + 2.9× 10−3mH −mexp
H

∆mexp
H

± 4.8× 10−3

slight disagreement in literature (Degrassi et al., Buttazzo et al., Masina)

28th Rencontres de Blois, 1st June 2016
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Updating the results in literature:
Bednyakov et al., PRL 115(20) (2015) 201802

Gauge couplings (g3 in particular) matching is performed at
mZ and it is dominated by

α
(5)
s = 0.1181± 0.0013 (error doubled)

Uncertainty on λ is dominated by uncertainty on Higgs mass
and theoretical errors in the matching procedure
(scale variation and truncation)

λ(mt) ' 0.7554 + 2.9× 10−3mH −mexp
H

∆mexp
H

± 4.8× 10−3

slight disagreement in literature (Degrassi et al., Buttazzo et al., Masina)
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Matching of Yukawa top coupling

Extrapolation of the yt(µ) from the matching between the running
top mass mt(µ) and the top pole mass mt:

yt matching

yt(µ)
v√
2

= m̄t(µ) = mt

(
1 + δWt (µ) + δQEDt (µ) + δQCDt (µ)

)
matching procedure theoretical uncertainty

experimental top mass: mexp
t = 173.34± 0.74GeV

ATLAS, CDF, CMS, D0, arXiv: 1403.4427

(but what it is really measured is a MC parameter mMC
t

→ how much is the error committed in the identi�cation?)

yt(mt) = 0.9359 + 4.4× 10−3mt −mexp
t

∆mexp
t

± 1.4× 10−3

28th Rencontres de Blois, 1st June 2016
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Running
(Mihaila, Salomon, Steinhauser; Chetyrkin, Zoller; Bednyakov, Pikelner, Velizhanin)

β-functions at NNLO (and 4-loop for strong coupling)

dλi(t)

dt
= κβ

(1)
λi

+ κ2β
(2)
λi

+ κ3β
(3)
λi
,

κ = 1/(16π2) , λi = {g, g′, g3, yt, λ, γ}

We focus on the

running of the

Higgs quartic

coupling λ

Degrassi et al.,
JHEP 08(2012) 098

28th Rencontres de Blois, 1st June 2016
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Higgs quartic coupling:
running of e�ective λ at NNLO

dλ

d ln
(
µ
mt

) ' 1

16π2
[12λ2 + 6λy2

t − 3y4
t −

3

2
λ(3g′2 + g2)+

+
3

16
(2g′4 + (g′2 + g2)2)] + λ(2)(µ/mt) + λ(3)(µ/mt)

The running of λ is heavily

dependent on the top Yukawa

coupling (and αs)

Stability or metastability?

In�ection point?

Buttazzo et al., JHEP 12(2013) 089

28th Rencontres de Blois, 1st June 2016
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RGE-improved e�ective potential

Ve�(φ) = V (0)(φ) + V (1)(φ) + V (2)(φ) ≡ 1

24
λe�(µ)φ4

Coleman-Weinberg correction (Coleman, Weinberg, PRD 7(1973) 1888)

V (1)(φ) =
∑

i=W±,Z,t

ni
4(4π)2

mi(φ)4

[
ln
mi(φ)2

µ2
− Ci

]
Issue: gauge dependence?

2-loop correction
Ford, Jack, Jones, Nucl.Phys.B 387(1992) 373-390 and in more compact forms
Degrassi et al. JHEP 1208(2012) 098; Buttazzo et al. JHEP 12(2013) 089

λ→ 0: Higgs and Goldstone contributions are neglected

Issue: is this approximation theoretically justi�ed?

28th Rencontres de Blois, 1st June 2016
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Abuses of the CW radiative correction

Ve� is gauge dependent: is it meaningful to extract
physical quantities?
For instance:

∂2Ve�
∂φ2

∣∣∣
φmin
≈ m2

H .

Solution!

Nielsen's identities and critical points

Dangerous �hunting� imaginary part:

V (1) ∼ ln
mi(φ)2

µ2(t)
, but . . . some mi(φ)2 < 0 !!

Solution!

~-expansion (Andreassen, Frost, Schwartz, PRL 113(2014) 241801)

28th Rencontres de Blois, 1st June 2016
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Gauge (in)dependence: Nielsen's identities
Nielsen, Nucl. Phys. B 101 (1975) 173-188

ξ
∂

∂ξ
V (φ, ξ) = −C(φ, ξ)

∂

∂φ
V (φ, ξ).

Variations w.r.t. gauge parameters are proportional to

variations w.r.t. �eld.

In other words, at critical points of V , the potential is gauge
independent.

The top mass value at

any stationary

con�guration

ms
t (s = i, c) is a

gauge-independent

quantity
28th Rencontres de Blois, 1st June 2016
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SM potential stationary con�gurations

Masina, PRD 87(2013) 053001

As mt increases, the potential is
destabilized:

stable

stable with �ex
(in�ection point) ?

stability line
(degenerate vacua) ?

metastable

deeper: unstable

mc
t ≈ mi

t

28th Rencontres de Blois, 1st June 2016
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SM potential stationary con�gurations

Masina, PRD 87(2013) 053001

As mt increases, the potential is
destabilized:

stable

stable with �ex
(in�ection point) ?

stability line
(degenerate vacua) ?

metastable

deeper: unstable

mc
t ≈ mi

t
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Stability results: degenerate vacua (1)

Only 1.5σ deviation from stability! Buttazzo et al., JHEP 12(2013) 089

mc
t = 171.08± 0.37αs ± 0.12mH ± 0.32thGeV

28th Rencontres de Blois, 1st June 2016



EW
stability
and

in�ection
point

Giuseppe

Iacobellis

Introduction

Calculation

Matching

Running

E�ective
potential

Gauge
dependence

Stationary
points

Degenerate
vacua

In�ection
point

Conclusions

Stability results: degenerate vacua (2)

mCMS
t = 172.38± 0.66GeV

CMS, Rep. number: CMS-PAS-TOP-14-015(2014)

Stability would be excluded at less than 1σ

28th Rencontres de Blois, 1st June 2016
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Degenerate vacua: theoretical uncertainties

NNLO matching (scale variation and truncation):

(∆λ)th ∼ 1.6σ in mH and (∆yt)th ∼ 0.3σ in mt

→ 0.32GeV in mc
t (dominant one);

Order of the β-functions in the RGE: error ∼ 10−5

(negligible);

Truncation of the e�ective
potential loop expansion at
2nd order: µ(t) = αφ(t)

The higher the order, the less
the dependence on α
(∼ ±5× 10−3GeV )

28th Rencontres de Blois, 1st June 2016
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In�ection point con�guration: results

A tension of at least 3σ appears:
all the false vacuum in�ationary
models seem to be ruled out

Exclusion should be less stronger than
Ballesteros, Tamarit, JHEP 09(2015) 210

V =
3π2As

2
r

The potential spans one order of
magnitude for decreasing αs:

dramatic variation of r

log10 V̄
1/4
i = 16.77 ± 0.11αs ± 0.05mH ± 0.08th

28th Rencontres de Blois, 1st June 2016
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In�ection point: theoretical uncertainties

NNLO matching (scale variation and truncation):

(∆λ)th ∼ 0.08GeV on V̄i and (∆yt)th has no signi�cant

impact on V̄i → 0.08GeV on V̄i;

Order of the β-functions in the RGE: V̄
1/4
i changes at

the per mille level (negligible);

Now the dependence at
tree-level is implicit, but
signi�cant (one order of
magnitude). The 1-loop
and 2-loop �atten the
potential and make the
uncertainty respectively of
20% and 5%

28th Rencontres de Blois, 1st June 2016
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Conclusions

Most updated and detailed study of gauge-independent

observables associated with mc
t (which ensures stability) and

mi
t (SM Higgs potential at rising in�ection point)

1 Stability of the SM is compatible with present data at

the level of 1.5σ: it is still a viable possibility.
Higher precision measurements of the top quark pole

mass and αs would be needed.

2 False vacuum in�ationary models (Higgs scalar rolling

down along an in�ection point con�guration) display a

3σ tension with the PLANCK bounds on the

tensor-to-scalar ratio r.

28th Rencontres de Blois, 1st June 2016
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Thank you.
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General in�ationary parameters: slow-roll

1 scalar spectral index: ns = 1− 6ε+ 2η;

2 tensor-to-scalar ratio: r = Pt/Ps ' 16ε;

3 number of e-folds:

N ≡ ln

(
af
ai

)
= λ2

P

∫ φCMB

φend

V

Vφ
dφ ∼ 50÷ 60

Planck collaboration, arXiv: 1303.5062

In�ationary scale

Vinfl = 1.94×1016GeV
( r

0.12

)1/4

Amplitude of scalar
perturbations (slow-roll approx)

As '
V

24π2εM4
P

28th Rencontres de Blois, 1st June 2016
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Matching procedure (1)

The matching for the gauge couplings is performed at

the Z boson pole mass mZ : the correction to the

numerical values for the related MS observables (from

PDG) is very small and can be neglected;

The matching between λh(µ) with the Higgs pole mass

mh is given by:

λh(µ) =
1

2

m2
h

v2

(
1 + δ

(1)
h (µ) + δ

(2)
h (µ) + . . .

)
known at NLO: δ

(1)
h (µ) is O(α), while δ

(2)
h (µ) is a

Yukawa contribution and a QCD contribution

(O(αα3),O(α4
s)). �Theoretical� uncertainty is 0.7% at

2-loop:

λh(mh) = 0.8065 + 0.0109(mh[GeV]− 126)+

+ 0.0015(mt[GeV]− 172)+0.0002
−0.0060

28th Rencontres de Blois, 1st June 2016
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Matching procedure (2)

Extrapolation of the yt(µ) from the matching between

the running top mass mt(µ) and the top pole mass mt:

yt(µ)
v√
2

= m̄t(µ) = mt

(
1 + δWt (µ) + δQEDt (µ) + δQCDt (µ)

)
,

known at NLO: δWt (µ) + δQEDt (µ) represent the EW

contribution (at 2-loop), while δQCDt (µ) is the QCD (at

3-loop).

�Theoretical� uncertainty is related to the choice of µ,
2% at 2-loop:

yt(mt) = 0.933 + 0.006(mt[GeV]− 172)+0.017
−0.013

28th Rencontres de Blois, 1st June 2016
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SM two-loop e�ective potential2

Coleman-Weinberg correction1

Ve�(φ) = V (0)(φ) + V (1)(φ) + V (2)(φ) ≡ 1

4
λe�(µ)φ4,

V (1)(φ) =
∑

i=W±,Z,t

ni
4(4π)2

mi(φ)4

[
ln
mi(φ)2

µ2(t)
− Ci

]
,

CW± = CZ =
5

6
, Ct =

3

2
, nW± = 6, nZ = 3, nt = −12

mi(t)
2 = kiφ(t)2, µ(t) = mZe

t

φ(t) = ξ(t)φcl, ξ(t) ≡ e−
∫ t
0 γ(τ)dτ

kW± =
1

4
g(t)2, kZ =

1

4

[
g(t)2 + g′(t)2

]
, kt =

1

2
φ(t)2

1S. Coleman, E. Weinberg, Phys. Rev. D7, 1888 (1973).
2't Hooft-Landau gauge and MS renormalization scheme.
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Anomalous dimension

Dilatation in a scale-invariant QFT: x→ λx,
each operator acquires a factor λ−∆,

with ∆ called scaling dimension of the operator

Free theories ∆0 from dimensional analysis (classical one);

Interacting �elds ∆ = ∆0 + γ(g), where γ(g) is the
anomalous dimension3: the scale invariance is

spoiled at quantum level
(or, in some cases, preserved approximatey over long distances).

Higgs �eld case

Γ(µ) ≡
∫ µ

mt

γ(µ′)d lnµ′, γ(g) = −d lnh

d lnµ

This quantity is independent by the cut-o� of the theory but not by the gauge.

3It is generally expressed by power series in the couplings, with their
running in energy.
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~ - expansion method (1)
(H. Patel, M. J. Ramsey-Musolf, JHEP 1107, 029 (2011) and also5)

~ counts the number of loops, the e�ective potential is
truncated to order ~ at NLO and ~2 at NNLO, with a λ ∼ ~
power counting4.

E�ective potential will be a series in ~:

Ve�(φ) = V (0)(φ) + ~V (1)(φ) + ~2V (2)(φ) + . . .→
φmin = φ(0) + ~φ(1) + ~2φ(2) + . . . ,

where φ(0) is the tree-level vev v and the others are the
quantum corrections δv.

Inserting into the minimization condition V ′e�

∣∣∣
φmin

= 0:

V ′e�(φmin) = V ′(0)(φ(0) + ~φ(1) + . . .) + V ′(1)(. . .) + . . . =

= V ′(0)(φ(0)) + ~[V ′(1)(φ(0)) + φ(1)V ′′(2)(φ(0))] = 0

4Be careful to terms scaling like the inverse power of ~.
5A. Andreassen, W. Frost, D. Schwartz, arXiv: 1408.0292.
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~ - expansion method (2)

Each power of ~ must satisfy the equality:

O(1) : V ′(0) = 0 tree-level vev

O(~) : φ(1) = −V ′′(0)(φ(0))−1V ′(1)(φ(0)) 1-loop

O(~2) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-loop

Vacuum energy

ε = V (0)(φ(0))+~V (1)(φ(0))+~2

(
V (2)(φ(0))− 1

2

V ′(1)(φ(0))2

V ′′(2)(φ(0))

)
+. . .

ε depends only on extremal gauge-independent objects

It can be applied also to
VEVs (δv), Masses, CW corrections, RG-improved vacua,
. . .
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Proof: gauge independence of ms
t (1)

Absolute stability (φc > φew)

∂Ve�
∂φ

∣∣∣∣
φew,mct

=
∂Ve�
∂φ

∣∣∣∣
φc,mct

= 0 , Ve�(φew,m
c
t ; ξ) = Ve�(φc,m

c
t ; ξ)

In�ection point (φi > φew)

∂Ve�
∂φ

∣∣∣∣
φew,mit

=
∂Ve�
∂φ

∣∣∣∣
φi,mit

= 0 ,
∂2Ve�
∂φ2

∣∣∣∣
φi,mit

= 0

Due to Nielsen's identities

∂Ve�(φ, ξ)

∂φ

∣∣∣∣
φs,mt

= 0→ ∂Ve�(φ, ξ)

∂ξ

∣∣∣∣
φs,mt

= 0

so Ve�(φs,m
s
t ; ξ) = Ve�(φLs ,m

s
t ; 0) ≡ V̄s
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Proof: gauge independence of ms
t (2)

Inverting Ve�(φs,m
s
t ; ξ) = Ve�(φLs ,m

s
t ; 0) ≡ V̄s

would give a gauge-dependent �eld and top mass

φs = φs(ξ) and m
s
t = ms

t (ξ)
Applying a total derivative w.r.t. ξ

∂Ve�
∂ξ

∣∣∣∣
φs,mst

+
∂Ve�
∂mt

∣∣∣∣
φs,mst

∂ms
t

∂ξ
+
∂Ve�
∂φ

∣∣∣∣
φs,mst

∂φs
∂ξ

= 0

third and �rst term vanish because of stationary condition

and Nielsen identity respectively.

Since in general ∂Ve�
∂mt

∣∣∣
φs,mst

6= 0, we obtain that

∂ms
t

∂ξ
= 0
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φ→ h: Higgs in�ation? (1)

Who's the scalar �eld which drives in�ation?

Minimal choice: the only scalar in SM, the Higgs �eld!

Main issue

The Higgs potential is not �at

V0 = λh

(
H†H− v2

2

)2

Electroweak (EW) scale: v ' 246GeV .
Higgs mass: mh ≡

√
2v2λh ' 125.1GeV .

Extrapolation of the high-energy behaviour is needed!
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φ→ h: Higgs in�ation? (1)

Who's the scalar �eld which drives in�ation?

Minimal choice: the only scalar in SM, the Higgs �eld!

Main issue

The Higgs potential is not �at

V0 = λh

(
H†H− v2

2

)2

Electroweak (EW) scale: v ' 246GeV .
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Extrapolation of the high-energy behaviour is needed!

28th Rencontres de Blois, 1st June 2016



EW
stability
and

in�ection
point

Giuseppe

Iacobellis

Backup

Slow-roll

NNLO
analysis

E�ective
potential
and gauge
dependence

Higgs
in�ation

False
vacuum

SM
extensions

Planck-scale
physics

φ→ h: Higgs in�ation? (2)

Unitary gauge

HT =
(

0 (h+ v)/
√

2
)

Guth, PRD 23(1981) 347

λh quartic coupling constant

For large �eld values

V0 ∼ λhh4
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Pure SM in�ation

1 Su�cient e-folds N ;

2 Correct As;

3 Power spectrum nearly

scale invariant.

M. Fairbairn et al., arXiv: 1403.7483

Y. Hamada et al., arXiv: 1308.6651

For mh ' 126GeV ⇒
too low Ntot

If Ntot correct, wrong

As: no slow-roll?

Maybe the Higgs is not
responsible of both in�ation and

scalar perturbations.
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False vacuum in�ation (1)6

Tuning the top quark mass, it is possible to obtain a shallow
local minimum at large �eld values (stability required);

The Higgs boson sitting in this false vacuum would provide
exponential in�ation and then could tunnel to the EW one;

The model needs another scalar responsible of scalar
perturbations and a mechanism (tunnelling) for escaping
from in�ationary phase (graceful exit).

6I. Masina, A. Notari, arXiv: 1112.2659.
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Real scalar singlet and right-handed neutrino:
U(1)B−L

Global Lagrangian

L = LSM + LS + LN ,

LS = −m
2
s

2
s2 −

λφs
2
|H|2 s2 − λs

24
s4 + (kinetic terms) ,

LN =

(
MN

2
N̄ cN + hνL̄αHN + c.c.

)
+ (kinetic terms)

I-type seesaw mechanism

mν = hν
v2

MN
, MN � v

Other generations can be generated by
lighter right-handed neutrinos

Z2 symmetry

ms < instability scale

tree-level threshold e�ect:

λ = λφ −
λ2
φs

λs
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Extended running7

Under evaluation...

7J. Elias-Miró, J. R. Espinosa, G. F. Giudice, H. M. Lee, A.
Strumia, JHEP 1206 (2012) 031.
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Gravitational corrections

Near the cuto� of the theory, large Planckian e�ects are possibile:
our ignorance about the UV completion of the theory could be

parametrized through an e�ective �eld theory approach

V (φ) =
λ

24
φ4 +

λ6

6

φ6

M2
P

+
λ8

8

φ8

M4
P

+O
(
φ10

M6
P

)
The impact of gravitational e�ects is largely dependent on the free

couplings towards stability or metastability

The e�ective theory expansion breaks down when φ ∼MP :

the use of an e�ective theory close to its cuto� might not be fully
reliable
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