

SUSY searches at 13 TeV with the CMS Experiment

Isabell-Alissandra Melzer-Pellmann for the CMS Collaboration

Outline

- Searches
 - Gluino-pair production
 - Squark-pair production
- Summary

Isabell Melzer-Pellmann – SUSY Searches at CMS

Introduction

Simplified models for gluino-pair production

Simplified models for squark-pair production

Where we are...

6

- Introduction
- Searches

➡> Gluino-pair production <━━

- all-hadronic final states
- leptonic final states

Squark-pair production

- all-hadronic final states
- leptonic final states
- Summary

Isabell Melzer-Pellmann – SUSY Searches at CMS

28th Rencontres de Blois

All-hadronic searches

1602.06581, 1603.04053 SUS-15-005

Most all-hadronic searches cover a large model range; typical variables: • $H_T = \Sigma p_T$ (jets), $MH_T = | -\Sigma \overrightarrow{p_T}$ (jets), $ME_T = | -\Sigma \overrightarrow{p_T}$ (all objects)| $M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\text{miss}X(1)} + \vec{p}_{\text{T}}^{\text{miss}X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)} \right) \right]$ $\alpha_{T} = p_{T}^{j2}/M_{T}$ (dijet-system) 2.2 fb⁻¹ (13 TeV) CMS 2.3 fb⁻¹ (13 TeV) Entries Events / 0.05 10^{8} CMS H₇ [200, 1000] GeV - Data \geq 4 j, 0 b $|Z \rightarrow v\overline{v}$ 10^{7} Preliminary ost lepton 10^{3} 10⁶ Multijet Data 10⁵ 10² 🚧 Total Standard Model 10⁴ V+jets, $t\bar{t}$, residual SM 10 ---- QCD multijet 10³ 10² 10⁻¹ 10 300 400 500 600 700 800 900 1000 M_{T2} [GeV] Data/Est. 0.5 1.5 2.5 2 2 α_{T} Isabell Melzer-Pellmann – SUSY Searches at CMS 28th Rencontres de Blois 7

All-hadronic searches

Main backgrounds in all-hadronic searches:

- W+jets and ttbar (with leptonic W decay, but lepton is 'lost')
- QCD multijets (misreconstructed jets might lead to large ME_T)
- → $Z \rightarrow vv+jets$ (mimics signal)

All backgrounds determined from data:

- Define control regions (CR) orthogonal but kinematically similar to signal regions (SR)
- Use (partly simulation-based) transfer factors to translate CR yields into SR predictions

Example: $Z \rightarrow vv+jets$ prediction with $\gamma+jets$ and $Z \rightarrow \mu\mu$

- Declare photon or muons invisible
- Re-calculate MH_T for this event
- Correct for the photon reconstruction efficiency, neutrino branching ratio, cross section ratio, R_{Z/γ} and residual differences btw. data and MC

Single-lepton inclusive searches

Mostly also quite inclusive, and less QCD multijet background; typical variables:

Di-lepton searches

10

Opposite-sign dileptons:

- Mass edge could be visible for some SUSY decays
- Largest deviation from SM prediction with 8 TeV data (ATLAS:on-Z; CMS: off-Z)

No signal with 13 TeV data

Isabell Melzer-Pellmann – SUSY Searches at CMS

Di-lepton searches

CMS

Same-sign dileptons: very clean signature, SM background very low

- Main backgrounds:
 - Non-prompt leptons (HF decays, hadrons, μ from meson decays, γ -conversions,...)
 - SM processes with SS dileptons (WZ, ttV)

Charge misidentification

Signal regions Most analysis define exclusive signal regions in bins of several variables: **Example:** single-lepton search, binned in: Number of b-tagged jets Number of jets Hт ≥1 b-jets 0 b-jets CMS Preliminarv 2.3 fb⁻¹ (13 TeV) CMS Preliminary 2.3fb⁻¹ (13TeV) Events Data 6-8 jets 2 tt + jets W + jets tt + iets t/ī T5q⁴WW 1.2/0.8 ttV(W/Z) W + jets ì 250<L_<350GeV 350<L₊<450GeV T5q⁴WW 1.5/0.1 450<L_T Pred. Uncertainty DY+jets 5 jets Other <600GeV T1t⁴ 1.2/0.8 T1t⁴ 1.5/0.1 Pred. Uncertainty 6-7 jets 10 10 T Data ≥8jets ≥9 jets L_⊤≥600GeV - 1 10-0-1 Data/Pred 6-7j 6-7j 6-7j 6-7j 6-7j 6-7j 5-8j ≥8j ≥8j LT1 LT1 LT2 LT2 LT3 LT3 LT1 LT1 LT2 LT3 HT1 HT23 HT1 HT23 HT12 HT3 HT1 HT23 HT1 HT1 LT3 LT3 1 HT01 HT2i NB2i NB1 6-8j 6-8j LT1 HT0 NB1 6-8j LT1 HT0 NB2 6-8j LT1 HT0 NB3i 6-8i LT1 HT1i NB1 6-8j LT1 LT1 LT2 HT1i HT1i HT0 NB2 NB3i NB1 6-8j 6-8j 6-8j LT2 LT2 LT2 HT0 HT0 HT1i NB2 NB3i NB1 6-8j 6-8j 6-8j LT2 HT1i NB2 6-8j LT2 LT3 HT1i HT01 NB3i NB1 6-8j 6-8j LT3 LT3 HT01 HT01 LT3 LT4i LT4i LT4i HT2i HT01 HT01 HT2i NB2i NB1 NB2i NB1 6-8j 6-8j 6-8j 6-8j LT4i LT1 LT1 LT1 LT1 HT2i HT01 HT01 HT0i HT2i NB2i NB1 NB2 NB3i NB1 6-8j ≥9j ≥9j ≥9j ≥9j LT1 LT2 HT2i HT0i NB2 NB1 ≥9j ≥9j LT2 HT0i NB2 LT2 LT3i HT0i HT0i NB3i NB1 LT3i HT0i LT3 HTi LT2 HTi NB2i No signal observed 28th Rencontres de Blois Isabell Melzer-Pellmann – SUSY Searches at CMS 13

Exclusion limits: gluino production

No signal observed in any search \rightarrow set limits on neutralino vs gluino mass

8 TeV limits superseded by more than 200 GeV

Isabell Melzer-Pellmann – SUSY Searches at CMS

28th Rencontres de Blois

Exclusion limits: gluino production

No signal observed in any search \rightarrow set limits on neutralino vs gluino mass Exclude decays to light quarks with intermediate decay to $\tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm}$

- all-hadronic and single-lepton search have similar sensitivity
- multi-lepton search stronger in searches for EWKinos

Gluino production in GMSB models

SUSY models with gauge mediation often predict:

- Photons, W or Z bosons
- Gravitino LSP
- Neutralino NI SP

Main backgrounds in searches with photons:

- QCD multijets with mismeasured jets leading to ME_T
- EWK background with intrinsic ME_T and misidentified γ

Where we are...

- Introduction
- Searches
 - Gluino-pair production
 - all-hadronic final states
 - leptonic final states

Squark-pair production 🧲

- all-hadronic final states
- leptonic final states
- Summary

All-hadronic searches

SUS-16-001, SUS-16-007

All-hadronic searches are usually sensitive to pair production of light squarks in search regions with lower jet multiplicity Specialized searches for sbottom and stop pair production; typical variables:

M_T (b_{1,2}, MET) = min(M_T(bjet1,MET), M_T(bjet2,MET))

Exclusion limits: squark production

No signal observed in any search \rightarrow set limits on neutralino vs squark mass

Exclusion limits: squark production

No signal observed in any search \rightarrow set limits on neutralino vs squark mass

SUS-16-002

SUS-16-004 SUS-16-007

Isabell Melzer-Pellmann – SUSY Searches at CMS

Where we are...

- Introduction
- Searches
 - gluino-pair production
 - squark-pair production

Summary and Outlook

22

First results on SUSY searches with 2.3 $\rm fb^{\text{-1}}$ of 13 TeV data have been presented

- No signal observed
- Exclusion limits on gluino-pair and squark-pair production exceed already the 8 TeV results by more than 200 GeV
- With data from the 2016 run, sensitivity to electroweak production will open up
 - \rightarrow searches for neutralinos, charginos and sleptons will become sensitive

Isabell Melzer-Pellmann – SUSY Searches at CMS

All-hadronic searches

1602.06581, 1603.04053 SUS-15-005

Most all-hadronic searches cover a large model range; typical variables: $H_T = \Sigma p_T$ (jets) $MH_T = |-\Sigma p_T^{*}$ (jets)|

Di-lepton search – signal regions

Comparison ATLAS - CMS

$N_{\rm jets}$ / $H_{\rm T}$	N _{b-jets}	$E_{\rm T}^{\rm miss}$ (GeV)	Predicted	Observed			
SRA	0	100-150	$29.1 \ ^{+5.3}_{-4.7}$	28			
		150-225	9.1 $^{+3.2}_{-1.9}$	7			
		225-300	$3.4 \ ^{+2.5}_{-1.0}$	6			
2–3 jets		> 300	$2.1 \ ^{+1.4}_{-0.7}$	6			
and $H_{\rm T} > 400 {\rm GeV}$	≥ 1	100-150	$14.3 \ _{-3.2}^{+4.4}$	21			
		150-225	$6.9 \ ^{+3.6}_{-2.3}$	6			
		225-300	$6.1 \ ^{+3.6}_{-2.3}$	1			
		> 300	$1.5 \ ^{+2.4}_{-0.9}$	3			
SRB		100-150	$23.6 \substack{+4.9 \\ -3.7}$	20			
	0	150-225	$8.2^{+3.4}_{-2.1}$	10			
		225-300	$0.8 \ ^{+1.2}_{-0.2}$	2			
		> 300	$1.5 \ ^{+2.4}_{-0.9}$	0			
	≥1	100-150	$44.7^{+7.7}_{-6.6}$	45			
\geq 4 jets		150-225	$16.8 \stackrel{+5.1}{_{-3.9}}$	23			
		225-300	$0.6 \ ^{+1.2}_{-0.3}$	4			
		> 300	$1.5 \ ^{+2.4}_{-0.9}$	3			
ATLAS - SR:							
$H_{\rm T} + p_{\rm T} {}^{l_1} + p_{\rm T} {}^{l_2} > 600 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 225 { m GeV}$	$\Delta \phi_{E_{\rm T}^{\rm miss}, j_1, j_2} > 0.4$	$12.3 \ ^{+4.0}_{-2.8}$	14			
	1/5/1	1 010-					

Introduction to Supersymmetry

SUSY: a beautiful and straight-forward extension of the SM...

- Only possible extension of the Poincare group
- Solves most SM questions (Includes gravity, Dark Matter, unification of the forces
- Predicts a light Higgs
- Perturbative → predictive

- Predicts many new scalar particles
- We don't know their masses
- Hard to find (at least up to now...)
- Adds new quantum number to prevent p decay, but otherwise not theoretically motivated...

- Escaped 30 years of searches!
- SUSY breaking not understood (soft breaking in hidden sector?)
- We are flowed by 105 new parameters...

Isabell Melzer-Pellmann – SUSY Searches at CMS

Supersymmetry

Each SM particle gets assigned a SUSY partner particle with spin differing by $^{1\!\!/_2}$ SUSY transformation:

- ↓ Q |fermion> = |boson>
- ♦ Q |boson> = |fermion>

Name convention:

- Fermion $\leftarrow \rightarrow$ S-fermion
- → Boson ← → bos(on)-ino

SUSY Particles						
Overview o	of Parti	icles				
Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates		
Higgs bosons	0	+1	$H^0_u \; H^0_d \; H^+_u \; H^d$	$h^0 \hspace{0.1 cm} H^0 \hspace{0.1 cm} A^0 \hspace{0.1 cm} H^{\pm}$	5 physical higgs	
squarks	0	-1	$egin{array}{cccc} \widetilde{u}_L & \widetilde{u}_R & \widetilde{d}_L & \widetilde{d}_R \ \widetilde{s}_L & \widetilde{s}_R & \widetilde{c}_L & \widetilde{c}_R \ \widetilde{t}_L & \widetilde{t}_R & \widetilde{b}_L & \widetilde{b}_R \end{array}$	$(ext{same}) \ (ext{same}) \ \widetilde{t_1} \ \widetilde{t_2} \ \widetilde{b}_1 \ \widetilde{b}_2$		
sleptons	0	-1	$egin{array}{lll} \widetilde{e}_L & \widetilde{e}_R & \widetilde{ u}_e \ \widetilde{\mu}_L & \widetilde{\mu}_R & \widetilde{ u}_\mu \ \widetilde{ au}_L & \widetilde{ au}_R & \widetilde{ u}_ au \end{array}$	(same) (same) $\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_{\tau}$		
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$	$\widetilde{\chi}_1^0, \widetilde{\chi}_2^0, \widetilde{\chi}_3^0, \widetilde{\chi}_4^0$	
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^\pm \widetilde{C}_2^\pm	$\chi_1^{+/-}\chi_2^{+/-}$	
gluino	1/2	-1	\widetilde{g}	(same)		
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)]	

SUSY Models

MSSM \rightarrow 105 free parameters (masses, couplings, phases)

 ${\sf pMSSM} \rightarrow$ 19 free parameters (first two sfermion generations degenerate, and with negligible Yukawa couplings)

- 10 sfermion masses
- 3 gaugino masses
- 3 tri-linear couplings (A_b, A_t, Aτ)
- μ, M_A, tanβ

CMSSM \rightarrow 4 free parameters

+ 1 phase

• $tan\beta$, A_0 , M_1 , $M_{1/2}$, $sign(\mu)$

NMSSM \rightarrow contains one extra singlet

- chiral superfield
- → solves μ problem (μ at EW and not Planck scale)

MSSM

Full vs. simplified Model

Past: interpretation in CMSSM **Present:** try to make it more easier for theorists to compare their model to our result \rightarrow use simplified model!

Isabell Melzer-Pellmann – SUSY Searches at CMS