

Electroweak physics and QCD in the forward direction at LHCb

Rencontres de Blois 2016

Wouter Hulsbergen (Nikhef) on behalf of the LHCb collaboration

Motivation

- electroweak and QCD measurements provide important tests of SM
- LHCb's forward acceptance gives access to previously unexplored kinematic regions of proton of PDFs

 this talk: measurements of W/Z production, Z A_{FB}, W/Z+jets, and top

The LHCb detector

- optimized for flavour physics
- full coverage for 2<η<5
- unique acceptance at LHC
- excellent luminosity determination
- excellent secondary vertex reconstruction

3

Luminosity determination

- essential ingredient: beam profile
- two methods:
 - 1. Van der Meer: beams scanned across each order
 - 2. Beam-Gas Imaging: inject neon in beam-pipe
- combination gives %-level uncertainty
 → allows for precise absolute crosssection measurements

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle. Beam 1 - Beam 2, Beam 1 - Gas, Beam 2 - Gas.

- luminosity for datasets reported here:
 - 7 TeV (2011): 1.0/fb +/- 1.7%
 - 8 TeV (2012): 2.0/fb +/- 1.2%
 - 13 TeV (2015): 0.3/fb +/- 3.9%

(uncertainty will improve in 2016)

Z -> l+l-

- Ζ-> μμ
 - trigger: 1 muon with $p_{T} > 10$ GeV
 - 2 muons: 2 < η < 4.5, p_T > 20 GeV
 - 60 < m(μμ) < 120 GeV
 - typical purity: 99%

- $Z \rightarrow ee$
 - trigger: 1 electron with $p_T > 15$ GeV
 - 2 electrons: 2 < η < 4.5, p_T > 20 GeV
 - m(ee) > 40 GeV
 - bremrecovery suffers from ecal saturation
 - final results translated to same fiducial region as Z-> $\mu\mu$ using simulation
 - typical purity: 95% (main background: electron mis-id)

Z -> μμ at 13 TeV

new.

7 TeV: <u>JHEP 12 (2014) 079</u> 8 TeV: <u>JHEP01(2016)155</u>

- selection:
 - trigger: 1 muon with $p_T > 10$ GeV
 - 2 < η < 4.5, pT > 20 GeV
 - prompt, small E(CALO)/p, isolated
 - veto on second lepton
 - typical purity: about 77%

- yield determination from fit to \textbf{p}_{T} distribution
 - heavy flavour, decay in flight backgrounds from data
 - EW backgrounds from simulation

W->μv at 7 and 8 TeV <u>3 TeV: JHEP 12 (2014) 079</u> 8 TeV: <u>JHEP01(2016)155</u>

• cross-section measured for W⁺ and W⁻ in bins of muon rapidity

- experimental precision of 2-4%: dominated by luminosity and beam energy uncertainty
- compared to NNLO predictions calculate using FEWZ
- good agreement with predictions for variety of PDF sets

W and Z cross-sections ratios

- many correlated uncertainties between measurements of W and Z in muon final state
 - luminosity
 - detection efficiency
 - PDFs
 - scale uncertainties
- ratios (W⁺/W⁻/Z, 7/8 TeV) provide even more stringent SM tests

W/Z cross-section ratios

• ratios extracted from 7 and 8 TeV datasets

- double ratios are (almost) statistically limited and have less than 1% experimental uncertainty
- PDFs uncertainty on W ratios may be reduced further by measuring ratios differentially in properly scaled rapidity [Arleon, Chapon, Paukkunen, EPJC (2016) 76, 214] $y = y_{ref} + \log\left(\frac{\sqrt{s}}{\sqrt{s-s}}\right)$

Z->µµ forward-backward asymmetry

• particle physics textbook: forward-backward asymmetry in $q\bar{q}$ ->Z/ γ *-> $\mu\mu$ events due to interference of V and A couplings

$$A_{
m FB} = rac{N(\cos heta > 0) - N(\cos heta < 0)}{N(\cos heta > 0) + N(\cos heta < 0)}$$

- A_{FB} is strong function of μμ mass and sensitive to sin²(θ_w)
- LHC is symmetric pp collider

 → valence quarks have higher x
 → infer quark direction from Z direction
 → leads to 'dilution', smallest in the forward region

Extraction of $sin^2\theta_W$

Jet reconstruction

- jets reconstruction:
 - particle flow (tracking+CALO)
 - FASTJET with anti-kT, R=0.5
 - additional jet quality criteria to increase fraction of hadronic jets (fake jet fraction ~1%)
 - well contained jets: 2.2< η <4.2
- energy resolution: ~10%
 - estimated from MC
 - validated by comparing p_{T} balance in Z+jet events
 - validated by comparing jet $p_{\rm T}$ with $p_{\rm T}$ of secondary vertex in heavy flavour jets
 - scale uncertainty: ~3% (p_T>20GeV)

JHEP05 (2016) 131

W+jet and Z+jet at 8 TeV

- important tests of perturbative QCD and PDFs
- W, Z selection: as before
- jet selection:

new

- p_T > 20 GeV, 2.2 < η < 4.2
- W+jet: p_T(μ+jet)>20 GeV
- consider only highest p_T jet

- LHCb measurements in 2.0/fb of 8 TeV data
 - Z+jet: differential in $p_T(jet)$, $\eta(jet)$, y(Z), $|\Delta \varphi|$
 - W+jet: differential in $p_T(jet)$, $\eta(jet)$, $\eta(mu)$

LHCB-PAPER-2016-011

W+jet and Z+jet at 8 TeV

• inclusive cross-section results:

new

 $\sigma_{W^+j} = 56.9 \pm 0.2 \pm 5.1 \pm 0.7 \text{ pb}$ $\sigma_{W^-j} = 33.1 \pm 0.2 \pm 3.5 \pm 0.4 \text{ pb}$ $\sigma_{Zj} = 5.71 \pm 0.06 \pm 0.27 \pm 0.07 \text{ pb}$

[errors: stat, syst, lumi]

 main uncertainties: jet energy scale (~10%) and W purity (~7%)

comparison of $\sigma(W+)/\sigma(W-)$ to FEWZ for different PDF sets. comparisons to POWHEF and aMC@NLO available as well

 all results in good agreement with POWHEG and aMC@NLO predictions

Jet flavour tagging

- b, c tagging with secondary vertex in jet cone
 - 2 BDTs to separate b/c and bc/light
 - input: #vertices, #tracks, SV mass
- performance
 - b (c) efficiency ~60% (20%) for 0.3% udsg contamination
 - tagging efficiency uncertainty ~10%, calibrated using data (e.g. samples with exclusively reco-ed B and D decays)

W+b,c jets at 7 and 8 TeV

- motivation
 - W+c: s-quark PDF
 - W+b: top quark production, beyond-SM
- b, c jet fractions extracted from fits to tagger BDT output
- measure ratios Wb/Wj, Wc/Wj and charge asymmetries, e.g.:

all consistent, but W+c looks more symmetric in data than expected \rightarrow does this tell us something about strange quark PDFs?

Top at 7 and 8 TeV

- motivation:
 - step towards tt-asymmetry [e.g. Kagan e.a., PRL107(2013)082003]
 - tests of gluon PDFs at high x / high Q² [e.g. Gauld, JHEP02(2014)126]
- strategy
 - tighten Wb selection: $pT(\mu) > 25$ GeV; 50 < $p_T(b-jet) < 100$ GeV
 - get t->Wb from fit to yields and charge asymmetry in $p_T(\mu+b)$ bins

 \rightarrow first observation of top in forward region, consistent with SM prediction

Summary and outlook

- LHCb's acceptance complementary to ATLAS and CMS
 - sensitive to high and low Bjorken-x (down to 10^{-5})
- extensive set of W/Z, W/Z+jet measurements at 7,8 TeV
 - cross-section ratios particularly suitable for SM tests
 - jet flavour tagging well understood
 - both muons and electrons: tests of lepton universality
- first observation of top in the forward region
 - 7 and 8 TeV measurements in agreement with SM
 - expect ~10x higher cross-section at 13 TeV in forward region
- expectations for run-II
 - collect about 2/fb per year
 - so far only Z-> $\mu\mu$: much more to come!

overview of W/Z (+jet) measurements at LHCb

- Z->μμ: 7 TeV: <u>JHEP08(2015)039</u>, 8 TeV: <u>JHEP01(2016)155</u>, 13 TeV: <u>LHCb-CONF-2016-002</u>
- Z->ee: 7 TeV: <u>JHEP02(2013)106</u>, 8 TeV: <u>JHEP05(2015)109</u>
- Z->ττ: 7 TeV: <u>JHEP01(2013)111</u>
- Z A_{FB}: 7 and 8 TeV: <u>JHEP11(2015)190</u>
- W->μv: 7 TeV: <u>JHEP12(2014)079</u>, 8 TeV: <u>JHEP01(2016)155</u>
- low mass Drell-Yan: 7 TeV: <u>LHCb-CONF-2012-013</u>
- Z+j: 7 TeV: <u>JHEP01(2014)033</u>, 8 TeV: <u>LHCB-PAPER-2016-011</u>
- W+j: 8 TeV: <u>LHCB-PAPER-2016-011</u>
- Z+b: 7 TeV: <u>JHEP01(2015)064</u>
- W+b,c: 7 and 8 TeV: <u>PRD 92 (2015) 052001</u>
- top: 7 and 8 TeV: <u>PRL115(2015)112001</u>