
Effective theories for accelerator neutrino cross 
sections

28th Rencontres de Blois

31 May, 2016

RICHARD HILL

TRIUMF 
Perimeter Institute 

U. Chicago

1



2

• introduction: importance of accelerator 
neutrino cross sections (Eν ~ GeV)

• deuteron constraints on the elementary signal 
process σ(νℓ n→ ℓ- p)

• new formalism for radiative corrections impacting 
σ(νe n→ e- p)/σ(νμ n→ μ- p)

• summary

1605.02613, and related work with J. Arrington, G. Lee

1603.03048, with A. Meyer, M. Betancourt and R. Gran and related work with B. 
Bhattacharya and G. Paz

Overview
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QCD in many regimes critical to extracting fundamental physics in the 
neutrino sector

ν

Perturbative 
QFT

Nuclear 
physics

Event generation and 
detector modeling

Precision 
hadron
physics

CP violation

mass hierarchy

sterile ν

proton decay

…

Lattice QCD

supernova ν



86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
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ν

Perturbative 
QFT

Nuclear 
physics

Event generation and 
detector modeling

Precision 
hadron
physics

Lattice QCD

Every neutrino-nucleus cross section prediction relies on nucleon-
level amplitudes constrained by deuterium experiments of the 1970’s 
and 80’s, fit to simple models.    What is the actual uncertainty?
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Start with the basic process

n p

μ-νμ

poorly known axial-vector form factor

�(⌫n ! µp) = | · · ·FA(q
2) · · · |2

A common ansatz for FA has been employed for the last ~40 years: 

5

C. Dipole fits

Our results for the axial form factor will di↵er from
the analyses in the original publications. These di↵er-
ences arise from a number of sources: di↵erent numerical
inputs in Table I; di↵erences in the statistical analysis
(such as fits to the binned Q2 distribution using the flux
representation (5) in place of unbinned likelihood fits);
and di↵erences in axial form factor shape assumptions.
In order to understand these di↵erences, we begin by re-
stricting attention to the dipole ansatz,

F dipole

A (q2) = FA(0)

✓
1� q2

m2

A

◆
�2

, (12)

and compare to fits in the orginal publications.8

Table II gives results for fits to the dipole ansatz
(12) for the axial form factor. The table shows “flux-
independent” results from the original experiments,
which performed unbinned likelihood fits to event-level
data. Our results represent a likelihood fit to the binned
Q2 distribution of events obtained with a neutrino flux
given by smoothing the binned reconstructed neutrino
energy distribution (divided by theoretical cross section),
as described in Sec. II B. Fits to the binned log-likelihood
function are found by minimizing the function

�2log (L (µ(FA))) = 2
X

i


µi � ni + nilog

✓
ni

µi

◆�
,

(13)
where ni is the number of events in each bin and µi is
the theory prediction (10) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.9

Because of the di↵erence in fit techniques, we do not
expect precise agreement even when the original choices
of constants in Table I are used. However, discrepancies
in central values for each case are below the 1� level, and
the size of the errors are approximately equal. Having
reproduced the original analyses to the extent possible,
and having updated constants as in Table I, we turn to
an investigation of axial form factor shape assumptions.

III. z EXPANSION ANALYSIS

Having fixed the datasets and analysis procedure, let
us investigate the implications of form factor shape as-
sumptions.

8 A similar exercise was performed in Refs. [3, 4, 29].
9 Errors determined by a covariance matrix analysis are in good
agreement; an explicit comparison of the two error determina-
tions is given in Sec. VI.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges and
choices of t

0

.

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

A. z expansion formalism

Let us recall that the axial form factor obeys the dis-
persion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (14)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [62],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (15)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (16)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.
In any given experiment, the finite range of Q2 implies

a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (17)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2. and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (18)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III

rA = 0.674(9) fm

6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

Typically quoted uncertainties are (too) small (e.g. compared to proton 
charge form factor)

Inconsistent with QCD. 
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n p

μ-νμ

Deuterium bubble chamber data Fermilab 15-foot deuterium bubble 
chamber, PRD 28, 436 (1983)

- small statistics, ~3000 events in world data

- small(-ish) nuclear effects

- small(-ish) experimental uncertainties 
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h4, =1.05 GeV

tion, the following assumptions are made: (1) time-
reversal invariance and charge symmetry, (2) partially con-
served axial-vector current (PCAC} for the small pseudo-
scalar term, and (3) isotriplet-conserved-vector-current
(CVC) hypothesis.
The first assumption, which requires all form factors to

be real, yields Eq——F~——0, leading to the absence of second
class currents. With the second assumption, Fp(Q ) is
given by

20-

Fp(Q )=2M Fg(Q~)/(Q +m ),
where

'0 2
Q' (Gev')

FICx. S. The Q distribution for the selected quasielastic
events. The solid curve represents the differential cross section
of quasielastic scattering for the neutron in deuteron.

Q'= (P —P„)'—(E„—E„)' .
The contribution to the cross section from this term in the
energy region E„&5 GeV is less than 0.1%, and conse-
quently this term is neglected. The third assumption re-
lates Fz and Fz to the isovector Sachs electric and mag-
netic form factor, Gz and G~ determined from electron-
scattering experiments as follows:

near /=0 . The shaded area corresponds to the addition-
al events found from the rescan. Using the average of the
events with P between —90 and 126 (dashed line), we
calculated the event bias to be S%%uo. This does not neces-
sarily represent the true loss of events because of the
three-point plot per event. We examined the true event
loss from the event bias in Fig. 4 by using a Monte Carlo
simulation. This event loss amounts to 8% and is not
recovered by rescanning (shaded area). Hence, a correc-
tion of 1.08+0.05 has been made to the data independent
of scanning efficiency.
Figure 5 shows the Q distribution for the quasielastic

events. The curve in Fig. 5 is the best fit obtained by us-
ing the prediction of the differential cross section for reac-
tion (2) with M~ ——1.05 GeV which was obtained from
this experiment (see Sec. III). The X value from this ftt
was found to be 15 for 20 data points for Q between 0.1
and 3 GeV . Comparing the observed Q distribution to
the fitted curve, the correction factor for Q &0.1 GeV2 is
estimated to be 1.10+0.02. The overall correction factor
including scanning-measuring efficiency is 1.34+0.07.
We note that this correction factor influences the value of
the neutrino flux but not the Mz value, because we use a
flux-independent method to determine Mq.

III. MEASUREMENT OF THE FORM FACTOR

2 2
Fy(Q') = G~(Q')+ — G (Q') 1+

4M 4M

2
' —1

Ff(Q )=[6M(Q )—GE(Q )]g ' 1+
4M

2
' —2

GE(Q }=6M(Q }(1+/) =A(Q ) 1+
My

where M~ is the vector mass, Mv ——0.84 GeV, g is the
difference between the proton and neutron anomalous
magnetic moment,

g'=}Mp—p„=3.708,
and A, (Q ) (Ref. 1S) is the correction factor for the small
deviation of the electron-scattering data from a pure di-
pole form factor. We further assume the axial-vector
form factor in a dipole form,

+g(Q )=+g(0)/(I+Q /Mg )

where the value of F~(0)=—1.23+0.01 is taken from P-
decay experiments. '
From these assumptions, the differential cross section

for the quasielastic reaction can be expressed in terms of
only one parameter, Mz, as

In the context of the V—A theory, the matrix element
for the quasielastic reaction, v&n ~p p, can be written as
a product of the hadronic weak current and the leptonic
current. ' The general form of the hadronic weak current
is written in terms of six complex form factors which are
functions of Q and characterize the nucleon structure.
These are Fs (induced scalar), Fp (induced pseudoscalar),
F~ (isovector Dirac), Ff (isovector Pauli), F~ (axial vec-
tor}, and Fr (induced tensor). The quasielastic cross sec-
tion can be expressed in terms of these six form factors.
In order to simplify the analysis of the quasielastic reac-

GMcos8c 2 2 (s u)&( ')+&( )
dQ 8rrE„M

1

C(Q2) (s
—u) (7)

where s —u =4ME„Q m&, and M =(M„+—Mp)—/2.
The values of the Fermi constant and of the Cabibbo angle
are taken to be G =1.166 32& 10 GeV and
cos8c——0.9737, respectively (see Ref. 16). The structure

Best source of almost-free neutrons: deuterium

ANL 12-foot deuterium bubble 
chamber, PRD 26, 537 (1982)

BNL 7-foot deuterium bubble 
chamber, PRD23, 2499 (1981)

also:
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n p

μ-νμ

p p
deuteron

Deuterium bubble chamber data Fermilab 15-foot deuterium bubble 
chamber, PRD 28, 436 (1983)

- small statistics, ~3000 events in world data

- small(-ish) nuclear effects

- small(-ish) experimental uncertainties 
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tion of 1.08+0.05 has been made to the data independent
of scanning efficiency.
Figure 5 shows the Q distribution for the quasielastic

events. The curve in Fig. 5 is the best fit obtained by us-
ing the prediction of the differential cross section for reac-
tion (2) with M~ ——1.05 GeV which was obtained from
this experiment (see Sec. III). The X value from this ftt
was found to be 15 for 20 data points for Q between 0.1
and 3 GeV . Comparing the observed Q distribution to
the fitted curve, the correction factor for Q &0.1 GeV2 is
estimated to be 1.10+0.02. The overall correction factor
including scanning-measuring efficiency is 1.34+0.07.
We note that this correction factor influences the value of
the neutrino flux but not the Mz value, because we use a
flux-independent method to determine Mq.

III. MEASUREMENT OF THE FORM FACTOR

2 2
Fy(Q') = G~(Q')+ — G (Q') 1+

4M 4M

2
' —1

Ff(Q )=[6M(Q )—GE(Q )]g ' 1+
4M

2
' —2

GE(Q }=6M(Q }(1+/) =A(Q ) 1+
My

where M~ is the vector mass, Mv ——0.84 GeV, g is the
difference between the proton and neutron anomalous
magnetic moment,

g'=}Mp—p„=3.708,
and A, (Q ) (Ref. 1S) is the correction factor for the small
deviation of the electron-scattering data from a pure di-
pole form factor. We further assume the axial-vector
form factor in a dipole form,

+g(Q )=+g(0)/(I+Q /Mg )

where the value of F~(0)=—1.23+0.01 is taken from P-
decay experiments. '
From these assumptions, the differential cross section

for the quasielastic reaction can be expressed in terms of
only one parameter, Mz, as

In the context of the V—A theory, the matrix element
for the quasielastic reaction, v&n ~p p, can be written as
a product of the hadronic weak current and the leptonic
current. ' The general form of the hadronic weak current
is written in terms of six complex form factors which are
functions of Q and characterize the nucleon structure.
These are Fs (induced scalar), Fp (induced pseudoscalar),
F~ (isovector Dirac), Ff (isovector Pauli), F~ (axial vec-
tor}, and Fr (induced tensor). The quasielastic cross sec-
tion can be expressed in terms of these six form factors.
In order to simplify the analysis of the quasielastic reac-

GMcos8c 2 2 (s u)&( ')+&( )
dQ 8rrE„M

1

C(Q2) (s
—u) (7)

where s —u =4ME„Q m&, and M =(M„+—Mp)—/2.
The values of the Fermi constant and of the Cabibbo angle
are taken to be G =1.166 32& 10 GeV and
cos8c——0.9737, respectively (see Ref. 16). The structure

Best source of almost-free neutrons: deuterium

ANL 12-foot deuterium bubble 
chamber, PRD 26, 537 (1982)

BNL 7-foot deuterium bubble 
chamber, PRD23, 2499 (1981)

also:
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HEP toolbox is being applied to precision lepton-nucleon scattering

coefficients in rapidly 
convergent expansion encode 
nonperturbative QCD

tcut

Systematically improvable, quantifiable uncertainties

experimental 
kinematic region

Underlying QCD tells us that Taylor expansion in appropriate 
variable is rapidly convergent

q2

particle thresholds

z

5

where ni is the number of events in the i-th bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and there
are similar sized discrepancies in the central values. A
similar exercise was performed in Refs. [64, 73, 74], and
similar results were obtained. Having reproduced the
original analyses to the extent possible, we will proceed
with the updated constants as in the final column of Ta-
ble I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [30],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (12)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t

0

. toptimal

0

is defined in Eq. (14).

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (14)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|

max

= 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [75], FA ⇠ Q�4, implies the series of four sum
rules [34]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = k

max

� 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [34] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [30] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fall-o↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)

FA(q
2) =

X

k

ak[z(q
2)]k
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Adapt these tools for neutrino - hadron scattering 

n p

μ-νμ νμ + n→μ- + p,   
0 < Q2 < 3 GeV2 

|z|<0.35

• Ab initio flux estimates have poorly constrained systematics. 

• Use published distributions in neutrino energy to determine flux:

3

TABLE I. Inputs from the original publications, BNL1981 [60], ANL1982 [66] and FNAL1983 [68], and our default inputs. See
text for details.

input BNL1981 ANL1982 FNAL1983 this work reference

gA -1.23 -1.23 -1.23(1) -1.2723(23) [46]

µp � µn � 1 3.708 3.71 3.708 3.7058 [46]

FV i Olsson [56] Olsson [56] Olsson [56] BBA2005 [41]

FP PCAC PCAC PCAC PCAC (1)

Deuteron correction Singh [57] Singh [57] Singh [57] Singh [57]

lepton mass mµ = mµ except ABC mµ = mµ mµ = mµ except ABC mµ = mµ

Q2 range 0� 3GeV2 0� 2.5GeV2 0� 3GeV2

N
bins

50 50 30

N
events

1236 1792 354

kinematic cut Q2 � 0.06GeV2 Q2 � 0.05GeV2 Q2 � 0.10GeV2

trino studies [41]. Similar results were obtained using the
BBBA 2007 [2] parameterization.3

For FP , we employ the ansatz,

FPCAC

P (q2) =
2m2

NFA(q2)

m2

⇡ � q2
. (1)

Nuclear corrections relating the free neutron cross sec-
tion, d�n to the deuteron cross section d�D may be pa-
rameterized as

d�D

dQ2

= R(Q2, E⌫)
d�n

dQ2

, (2)

where d�D/dQ2 denotes the deuteron cross section dif-
ferential in the variable Q2

QE

defined by the quasielastic
assumption (scattering on a free neutron at rest),

Q2

QE

= �m2

µ +
(2mNEµ �m2

µ)(Eµ � pµ cos ✓µ)

mN � Eµ + pµ cos ✓µ
. (3)

The model of Ref. [57] was used in the original analyses,
with R(Q2, E⌫) ⇡ R(Q2) independent of neutrino energy,
and R(Q2) ! 1 above Q2 ⇡ 0.2GeV2. We retain this
description as default but examine deviations from this
simple model below in Sec. IV.

The neutrino-neutron quasielastic cross section may be
written in a standard form,

d�n

dQ2

/ 1

E2

⌫

⇥
A(Q2) +B(Q2)W + C(Q2)W 2

⇤
, (4)

where Q2 = �q2 is the invariant momentum transfer,
E⌫ is the incoming neutrino energy, W = E⌫/mN �
Q2/(4m2

N )�m2

µ/(4m
2

N ), and A, B and C are quadratic
functions of nucleon form factors [40]. In the BNL1981

3 A systematic study of the vector form factors similar to the z
expansion analysis of the axial form factor presented here is un-
dertaken in Refs. [44, 45].

and FNAL1983 datasets, the lepton mass was neglected
inside the functions A(Q2), B(Q2) and C(Q2) of Eq. (4),
but retained in other kinematic prefactors. In our default
fits, we retain the complete lepton mass dependence.
Table I also gives the Q2 range and bin size, the total

number of events, and the minimum Q2 retained in the
analysis (in each case, the lowest-Q2 bin was omitted).
We retain the same binning and minimum Q2 cut in our
default fits. The event distributions in Q2 have been
obtained by digitizing the relevant plots from the original
publications. [rjh: These digitizations are reproduced
as supplementary material to the present paper.]

B. E⌫ distributions and flux

An advantage of the approximately quasielastic pro-
cess (neutrino scattering on isolated neutron at rest) is
that the neutrino energy may be accurately reconstructed
for each event, allowing determination of cross section pa-
rameters while avoiding poorly-controlled uncertainties
in ab initio neutrino flux estimates.
Unfortunately, event-level information for the deu-

terium datasets is no longer available, so that, e.g., it
is not possible to perform an unbinned likelihood fit us-
ing the E⌫ and Q2 dependence of the cross section, as in
the original publications. However, the one-dimensional
distribution of events in reconstructed neutrino energy,
dN/dE⌫ , may be extracted from the original publica-
tions, and we may use this information to reconstruct
the flux self-consistently,

�(E⌫)dE⌫ =
1

�(E⌫ , FA)

dN

dE⌫
dE⌫ , (5)

where �n(E⌫ , FA) is the quasielastic cross section. 4

4 In practice, fits are performed with Eq. (5) by first implementing
a fixed trial ansatz for FA(q2) to compute the cross section ap-
pearing in the denominator; The fits are then iterated with the
thus-determined FA(q2) until convergence is reached.

• Fit to published Q2 distributions to determine FA

• Event-level data from the deuterium experiments has been lost

• Reproduced results of original publications under same assumptions

• Replaced dipole FA with model-independent z expansion
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�2
= 30 (16 points, BNL)

�2
= 32 (19 points, ANL)

Possible correlated effect between datasets, including deficit at small Q2

Revisit systematics: 

Data are in tension with any FA described by QCD

- experimental acceptance/efficiency correction
- theoretical deuteron correction

8
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-3910×
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FIG. 2. Best fit curves and errors propagated from deu-
terium to free-neutron cross section, for BNL1981 (top pane),
ANL1982 (middle pane) and FNAL1983 (bottom pane). Blue
(horizontal stripes) corresponds to dipole and red (vertical
stripes) to Na = 4 z expansion in Table IV.

]2[GeV2Q
0 0.5 1

]2
/G

eV
2

 [c
m

2
/d

Q
σd

0

5

10
 = 4 z expansionaN

dipole fit

FIG. 3. Absolutely normalized d�n/dQ2 at E⌫ = 10 GeV for
dipole (blue) and z-expansion axial form factor central values
as in the FNAL1983 results of Fig. 1 and Fig. 2.

]2[GeV2Q
0 1 2 3

da
ta

 / 
fit

0

0.5

1

1.5

2

BNL
ANL
FNAL

FIG. 4. Data divided by best fit prediction for the Q2

distributions displayed in Fig. 1, for BNL(blue) ANL (red),
and FNAL (green).

A. Form factor scheme dependence

A test with variations of the number of free parameters
was presented in Eq. (20) of the previous section. In order
to translate other test fits into parameters that can be
compared side-by-side, we will consider in all cases the
dimensionless shape parameter defined by

ā
1

⌘ a
1

|t
0

=

¯t
0

⌘ �4(t
cut

� t̄
0

)F 0

A(t̄0) , (22)
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- theoretical systematic: deuteron correction
11

2. Acceptance corrections

One source of uncertainty in the low-Q2 region is
the acceptance corrections associated with human eye-
scanning of the bubble chamber photographs, especially
in the limit of very-low Q2. For example, Fig. 1 of ANL
1982 [71] includes an estimate of the scanning e�ciency
ranging from e = 90±7% at 0.05GeV2 < Q2 < 0.1GeV2

to e = 98±1% for Q2 > 0.15GeV2. We include a possible
correlated e�ciency correction by comparing nominal fits
with a new fit obtained by the replacing the e�ciency-
corrected number of events,

dN

e(Q2)
! dN

e(Q2) + de(Q2)
=

dN

e(Q2)

✓
1 + ⌘e

de(Q2)

e(Q2)

◆
�1

.

(30)
Here ⌘e = 0 ± 1 is a parameter introduced in the fit,
and we use a simple linear interpolation of the function
in Ref. [71] for the e�ciency e(Q2) and e�ciency error
de(Q2).

In the BNL dataset, an e�ciency e↵ect with similar
magnitude is presented, but not directly in the Q2 vari-
able. For simplicity we take the ANL function to rep-
resent possible e↵ects in both BNL and FNAL datasets,
with independent floating scale parameters ⌘ = 0 ± 1 in
Eq. (30).

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (without)

[1.98(13), 26.9] (with)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (without)

[2.27(11), 28.1] (with)
,

FNAL : [ā
1

, �2LL] =

(
[1.87(25), 8.1] (without)

[1.87(25), 8.7] (with)
.

(31)

[rjh: How did -2LL get bigger after allowing for cor-
rection? And the uncertainty on a1 got smaller not
larger when this additional freedom was introduced.]
The parameter ⌘ takes on values of -1.9, -1.0, and +0.02
for data from ANL1982, BNL1981, and FNAL1983 re-
spectively; the negative values indicate a pull to de-
crease the predicted cross section to match the data. In
each case there is only a small or modest improvement
in the fit quality, and small impact on the form factor
shape. Acceptance corrections within the quoted range
have only minor impact.

3. Deuteron corrections

The analysis to this point, like the experimenter’s origi-
nal analysis, used the deuteron correction model R(Q2) of
Singh [60]. This model provides a suppression of the cross
section for Q2 < 0.16 GeV2. A followup analysis [61]
presents additional results including meson exchange cur-
rent contributions and considers additional forms for the

]2[GeV2Q
0 0.5 1 1.5

]
2

/G
e

V
2

 [
cm

2
/d

Q
σ

d

0

5

10

15

20

25
-3910×

Free nucleon

Singh
Shen

FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The dashed (red) curve is the free-
neutron result. The bottom solid (red) curve is obtained from
the free-neutron result using the model from Ref. [60], as in
the original deuterium analyses. The top solid (black) curve is
extracted at E⌫ = 1GeV from Ref. [62]. The charged lepton
mass is neglected in this plot.

deuteron wave function. These results are also limited
to a 1 GeV neutrino and Q2 < 0.16 GeV2; within these
bounds they suggest 5% to 15% e↵ects depending on the
configuration of the calculation.
An example of a modern calculation with extended

range in energy and Q2 is given by Ref. [62]. 8 This
model is overlaid with the original Singh model as well
as the free neutron model in Fig. 6. The newer model
deviates substantially from the free-neutron result at the
⇠ 20% level over a broad Q2 range. These models do not
constitute an estimate of the uncertainty on deuteron
corrections, and suggests an avenue for future work even
if there are no future measurements on deuterium.

Assuming an energy-independent deuteron correction
with Q2-dependence, the change in the fit results can be
compared. Because the Shen et al. curve is given only
for Q2 < 1.0, the fits are limited to the configuration of
Table. V and Eq. 27.

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (Singh)

[2.15(14), 24.7] (Shen)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (Singh)

[2.45(13), 28.4] (Shen)
,

8 See also Ref. [21].

E⌫ = 1GeV

assumed in existing world averages: 
Singh, NPB 36, 419 (1972).

modern potential model: Shen, 
Marcucci, Carlson, Gandolfi, 
Schiavilla (1205.4337)

• An open problem to quantify uncertainty, especially at larger energy
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12

with extended range in energy and Q2 is given by Shen
et al. in Ref. [70].12 The Shen et al. model is overlaid
with the original Singh model as well as the free neutron
model in Fig. 6. The Shen et al. model deviates sub-
stantially from the free-neutron result at the ⇠ 20% level
over a broad Q2 range. These models do not constitute
an estimate of the uncertainty on deuteron corrections,
but suggest an avenue for future work even if there are
no future measurements on deuterium.

Assuming an energy independent, but Q2 dependent,
deuteron correction, the change in the fit results can
be compared. For illustration, we employ the results
of Ref. [70] at E⌫ = 1GeV, and limit attention to
Q2  1GeV2, i.e., the configuration of Table V and
Eq. (25). Shape parameter and minimum �2LL values
are

BNL : [ā
1

, �2LL] =

(
[1.99(15), 27.0] (Singh)

[2.16(14), 25.1] (Shen et al.)
,

ANL : [ā
1

, �2LL] =

(
[2.29(14), 30.5] (Singh)

[2.46(13), 29.2] (Shen et al.)
,

FNAL : [ā
1

, �2LL] =

(
[1.88(25), 8.2] (Singh)

[2.00(25), 9.1] (Shen et al.)
.

(30)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three data sets.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. In our
final analysis, we modify the original fits displayed in Ta-
ble V. First, we allow a correlated acceptance correction
as in Eq. (28). Second, we include a 10% error added
in quadrature to statistical error in each Q2 bin to ac-
count for residual deuteron or other systematic correc-
tions, as described at the end of Sec. IVB. With these
corrections in place, we perform a �2 fit to all data up to
Q2 = 1GeV2. The neglect of data above Q2 = 1GeV2

has only minor impact on the extraction of FA(q2), and
allows a simple treatment of these combined uncertain-
ties with full covariance using a �2 fit.

As an alternative, we also provide a log-likelihood fit to
the data up to Q2 = 3GeV2, but without inflated errors
to account for deuterium and other residual systematics.
This has the benefit of including data over the entire
kinematic range, but omits sources of systematic error
that would need to be treated separately.

12 See also Ref. [80].

VI. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from a joint fit
to the three datasets. We choose Na = 4 free parameters
with t

0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (16). The acceptance correction free parameter is
independent for each experiment in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are13

[a
1

, a
2

, a
3

, a
4

] = [2.30(13),�0.6(1.0),�3.8(2.5), 2.3(2.7)] .
(31)

The diagonal entries of the error (covariance) matrix,
computed from the inverse of the Hessian matrix for
�2({ak}), are

E
diag. = [0.0154, 1.08, 6.54, 7.40] . (32)

Note that (E
diag.)i ⇡ (�ai)2, reflecting approximately

Gaussian behavior. The four-dimensional correlation
matrix is

Cij =

0

BBB@

1 0.350 �0.678 0.611

0.350 1 �0.898 0.367

�0.678 �0.898 1 �0.685

0.611 0.367 �0.685 1

1

CCCA
. (33)

and as usual the error matrix is given by Eij = �ai�ajCij .
This description can be systematically improved when
and if further data or externally constrained deuterium
models become available. The form factor is plotted ver-
sus Q2 and versus z in Fig. 7, and compared with a pre-
vious world average dipole form factor from Ref. [53]
We also provide an alternate log-likelihood determina-

tion of the axial form factor to the range Q2 < 3.0 GeV2,
but without deuteron systematic corrections. Central
values and 1� errors determined from �(�2LL) = 1 are

[a
1

, a
2

, a
3

, a
4

] = [2.28(8), 0.25(95),�5.2(2.3), 2.6(2.7)] .
(34)

The diagonal entries of the error matrix are

E
diag

= [0.00635, 0.781, 4.49, 6.87] , (35)

13 The complete specification for the form factor involves the
normalization gA = �1.2723 from Table I; the pion mass
m⇡ = 0.14GeV employed in the specification of t

cut

= 9m2

⇡
in Eq. (12); and the choice t

0

= �0.28GeV2. The remaining co-
e�cients, a

0

, a
5

, a
6

, a
7

and a
8

, are determined by FA(0) = gA,
and by the sum rule constraints (16); for ease of comparison
we list the complete list of central values here: [a

0

, · · · , a
8

] =
[�0.759, 2.30,�0.6,�3.8, 2.3, 2.16,�0.896,�1.58, 0.823].

12

with extended range in energy and Q2 is given by Shen
et al. in Ref. [70].12 The Shen et al. model is overlaid
with the original Singh model as well as the free neutron
model in Fig. 6. The Shen et al. model deviates sub-
stantially from the free-neutron result at the ⇠ 20% level
over a broad Q2 range. These models do not constitute
an estimate of the uncertainty on deuteron corrections,
but suggest an avenue for future work even if there are
no future measurements on deuterium.

Assuming an energy independent, but Q2 dependent,
deuteron correction, the change in the fit results can
be compared. For illustration, we employ the results
of Ref. [70] at E⌫ = 1GeV, and limit attention to
Q2  1GeV2, i.e., the configuration of Table V and
Eq. (25). Shape parameter and minimum �2LL values
are

BNL : [ā
1

, �2LL] =

(
[1.99(15), 27.0] (Singh)

[2.16(14), 25.1] (Shen et al.)
,

ANL : [ā
1

, �2LL] =

(
[2.29(14), 30.5] (Singh)

[2.46(13), 29.2] (Shen et al.)
,

FNAL : [ā
1

, �2LL] =

(
[1.88(25), 8.2] (Singh)

[2.00(25), 9.1] (Shen et al.)
.

(30)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three data sets.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. In our
final analysis, we modify the original fits displayed in Ta-
ble V. First, we allow a correlated acceptance correction
as in Eq. (28). Second, we include a 10% error added
in quadrature to statistical error in each Q2 bin to ac-
count for residual deuteron or other systematic correc-
tions, as described at the end of Sec. IVB. With these
corrections in place, we perform a �2 fit to all data up to
Q2 = 1GeV2. The neglect of data above Q2 = 1GeV2

has only minor impact on the extraction of FA(q2), and
allows a simple treatment of these combined uncertain-
ties with full covariance using a �2 fit.

As an alternative, we also provide a log-likelihood fit to
the data up to Q2 = 3GeV2, but without inflated errors
to account for deuterium and other residual systematics.
This has the benefit of including data over the entire
kinematic range, but omits sources of systematic error
that would need to be treated separately.

12 See also Ref. [80].

VI. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from a joint fit
to the three datasets. We choose Na = 4 free parameters
with t

0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (16). The acceptance correction free parameter is
independent for each experiment in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are13

[a
1

, a
2

, a
3

, a
4

] = [2.30(13),�0.6(1.0),�3.8(2.5), 2.3(2.7)] .
(31)

The diagonal entries of the error (covariance) matrix,
computed from the inverse of the Hessian matrix for
�2({ak}), are

E
diag. = [0.0154, 1.08, 6.54, 7.40] . (32)

Note that (E
diag.)i ⇡ (�ai)2, reflecting approximately

Gaussian behavior. The four-dimensional correlation
matrix is

Cij =

0

BBB@

1 0.350 �0.678 0.611

0.350 1 �0.898 0.367

�0.678 �0.898 1 �0.685

0.611 0.367 �0.685 1

1

CCCA
. (33)

and as usual the error matrix is given by Eij = �ai�ajCij .
This description can be systematically improved when
and if further data or externally constrained deuterium
models become available. The form factor is plotted ver-
sus Q2 and versus z in Fig. 7, and compared with a pre-
vious world average dipole form factor from Ref. [53]
We also provide an alternate log-likelihood determina-

tion of the axial form factor to the range Q2 < 3.0 GeV2,
but without deuteron systematic corrections. Central
values and 1� errors determined from �(�2LL) = 1 are

[a
1

, a
2

, a
3

, a
4

] = [2.28(8), 0.25(95),�5.2(2.3), 2.6(2.7)] .
(34)

The diagonal entries of the error matrix are

E
diag

= [0.00635, 0.781, 4.49, 6.87] , (35)

13 The complete specification for the form factor involves the
normalization gA = �1.2723 from Table I; the pion mass
m⇡ = 0.14GeV employed in the specification of t

cut

= 9m2

⇡
in Eq. (12); and the choice t

0

= �0.28GeV2. The remaining co-
e�cients, a

0

, a
5

, a
6

, a
7

and a
8

, are determined by FA(0) = gA,
and by the sum rule constraints (16); for ease of comparison
we list the complete list of central values here: [a

0

, · · · , a
8

] =
[�0.759, 2.30,�0.6,�3.8, 2.3, 2.16,�0.896,�1.58, 0.823].

• FA with complete error budget, correlations: 
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
Also shown is the dipole axial form factor with axial mass
mA = 1.014(14) GeV [54].

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [54]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [54]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].

FA(q
2) =

X

k

ak[z(q
2)]k
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6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

- order of magnitude larger uncertainty compared to dipole fits

- impacts comparison to other data, e.g. pion electroproduction, muon 
capture
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and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1
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VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [53]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].

- a basic parameter of nucleon structure
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FIG. 8. Free nucleon CCQE cross section computed
from Eqs. (31), (32) and (33), for neutrino-neutron (top)
and antineutrino-proton (bottom) scattering. Also shown
are results using dipole axial form factor with axial mass
mA = 1.014(14) GeV [54].

energies, the cross sections and uncertainties shown in
Fig. 8 are

�⌫n!µp(E⌫ = 1GeV) = 10.1(0.9)⇥ 10�39 cm2 ,

�⌫n!µp(E⌫ = 3GeV) = 9.6(0.9)⇥ 10�39 cm2 , (38)

for neutrinos and

�⌫̄p!µn(E⌫ = 1GeV) = 3.83(23)⇥ 10�39 cm2 ,

�⌫̄p!µn(E⌫ = 3GeV) = 6.47(47)⇥ 10�39 cm2 , (39)

for antineutrinos.
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FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [55] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas nuclear model with z expansion axial form factor
extracted from deuterium data. MINERvA data uses an up-
dated flux prediction from [81]. Also shown are results using
the same nuclear model but dipole form factor with axial mass
mA = 1.014(14) GeV [54].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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mA = 1.014(14) GeV [54].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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event generator for input to nuclear models
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C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs.(31), (32) and (33) can be readily implemented in
neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [53]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.

Derived observables:  3) neutrino-nucleus quasi elastic cross sections

z expansion constrained by deuterium

“world average dipole”

[Minerva PRL 111, 022502 (2013)]
with 2015 updated flux

- z expansion (with correlations, reweighting) coded in GENIE, can be 
readily implemented with nuclear models

- errors have different kinematic dependence than dialing mA in dipole 
ansatz

A. Meyer

New module for z 
expansion and reweighting 
in GENIE event generator
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Practical obstacles to modern neutrino experiments with elementary 
(hydrogen or deuterium) target.  Lattice QCD is poised to contribute.
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3

5. The analyticity method proposed here is interesting. What are potential pitfalls when applied in finite volume and with
non-zero lattice spacing?

As in B physics, we intend to apply the z expansion to a continuum-limit fit of the lattice data. Note that HPQCD has used
a “modified z expansion” combining the z expansion with the continuum extrapolation. Their results are consistent with
our two-step approach in, e.g., the B ! Kll rare semileptonic decay.

Because the spectrum is discrete in a finite volume, the cut in the q2 plane becomes a (dense) series of poles. Even so, the
non-analyticity remains on the real axis for q2 � 4M2

p . The salient feature of the conformal mapping from z to q2 is that it
maps the non-analytic region onto the unit circle, and the rest of the real axis on the line segment |z|< 1. These properties
are not altered if one has a series of poles instead of a cut.

6. The other known, large, systematic error in nucleon structure calculations is excited state contamination. It is reasonable
to expect (much) larger effects with staggered fermions due to extra flavor degrees of freedom. How will your study address
this? What are your source-operator-sink separations (in physical units)?

A striking feature of staggered-fermion correlators is the presence of a tower of opposite-parity states with oscillating time
dependence (�1)1+t/ae�m0

nt instead of the e�mnt behavior of the usual tower of radial excitations. These oscillating states
are not a big problem, in practice, because a fitter can easily distinguish a zig-zag from a smooth function.

In addition, the operators we propose to use to compute FA(q2) couple to D baryons as well as nucleons. We plan to
separate these contributions with a variational analysis of the proposed 4⇥4 matrix correlator. We have experience with
the variation analyses, in the presence of oscillating states, from the Ds spectrum, computed with clover charm and HISQ
strange quarks [21].

If needed, we can also compute a two-point correlation function that contains a D of a different taste but no nucleon.
Because the taste splittings with HISQ are small, this correlator can be used to set a prior for the mass of the lowest-lying
D in our correlators.

Finally, because the HISQ inverters are fast and the boxes are big, it is feasible to increase statistics, where needed, to
obtain very precise correlators. Sufficient precision at the outset will enable the rest of the analysis, in particular controlling
excited states.

FIG. 2. Summary of gA calculations worldwide in the L-Mp L plane.

The Nucleon Axial-Vector Form Factor at the Physical Point
with the HISQ Ensembles

A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X. El-Khadra, E. D. Freeland,
E. Gámiz, Steven Gottlieb, U. M. Heller, R. J. Hill, J. Komijani, A. S. Kronfeld,⇤ J. Laiho,

Ruizi Li, P. B. Mackenzie, D. Mohler, A. S. Meyer,† C. Monahan, E. T. Neil, Heechang Na,
J. Osborn, T. Primer, J. Simone, R. Sugar, D. Toussaint, R. S. Van de Water, and Ran Zhou

(Fermilab Lattice and MILC Collaborations)
(Dated: April 24, 2015)

RESPONSES TO SPC QUESTIONS

1. The dominant systematic in gA lattice calculations is likely not discretization errors. Is there a strong motivation for
staggered calculations given the many large scale studies with different lattice fermions already available both in the US
and around the world?
The principal motivation for a HISQ-on-HISQ calculation is to circumvent the chiral extrapolation. As shown in Fig. 1,
all other calculations (of which we are aware) have at most one ensemble with physical sea and physical valence masses.
We propose to use three lattice spacings at the physical point, so we can check how large the discretization effects are.
Two projects from the LHP Collaboration reach the physical point. One of these uses BMW configurations but at only
one lattice spacing. The other uses, in the most part, RBC/UKQCD configurations with Mp � 300 MeV, a ⇡ 0.06 fm,
supplemented by 20 configurations of a physical-point, a ⇡ 0.11 fm ensemble.

FIG. 1. Summary of gA calculations worldwide in the M2
p -a plane, showing only those with n f = 2+1 [1–8] and 2+1+1 sea quarks [9–12].

With HISQ the tastes of staggered pions have small splitting. Parameters for the BMW ensembles are taken from Ref. [13].

⇤ ask@fnal.gov
† asmeyer2012@uchicago.edu

A. Meyer,  A. Kronfeld, RJH with Fermilab Lattice and MILC collaborations

Big lattices, multiple spacings, physical quark masses

Other targets: neutral currents; resonance couplings and form 
factors; pion final states

Advantages: independent of detector-dependent radiative corrections and 
nuclear effects (and for lattice QCD: no underground safety hazard)

m⇡[MeV] L[fm]

a[
fm

]

m
⇡
L

Lattice Extent vs. Pion MassPion mass vs. lattice spacing
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QED radiative corrections impact, e.g., νe appearance signal.  Validate 
with electron-proton scattering.  (Actually, progress in radiative 
corrections required here also.)
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy

3) Systematic effects in electron-proton 
scattering impact neutrino-nucleus scattering, 
at a level large compared to long baseline 
precision requirements

This problem has broad ownership, e.g.:



What is the proton charge radius?

recall scattering from extended classical charge distribution: 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

En ⇠ R1
n2

+
r2E
n3

hcR1 =
mec2↵2

2
⇡ 13.6 eV proton charge radius
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5σ discrepancy in Rydberg constant from (1+2) versus (3)
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atoms formed. Themeasurement times varied between 3 and 13 h per
laser wavelength. The 75-ns-long laser time window, in which the
laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
intervals.

Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
originates exclusively from our laser wavelength calibration proced-
ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
relative spacingbetween the 5 lines agreeswith thepublishedones.One
suchmeasurement of awater vapour absorption line is shown in Fig. 5.
Our quoted uncertainty of 300MHz comes from pulse to pulse fluc-
tuations and a broadening effect occurring in the Raman process. The
FSRof the reference Fabry–Perot cavity does not contribute, as the FSR
is known better than 3 kHz and the whole scanned range is within 70
FSR of thewater line. Other systematic correctionswe have considered
are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
(,1MHz), Doppler shift (,1MHz) and pressure shift (,2MHz).
Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30

and do not contribute to our observed signal. Also, the width of our
resonance line agrees with the expectedwidth, whereasmolecular lines
would be wider.

The centroid position of the 2SF~1
1=2 {2PF~2

3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy of DẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
We note that 0.31meV is 64 times the claimed uncertainty of equation
(1).

TheCODATAdeterminationof rp canbe seen in a simplifiedpicture
as adjusting the input parameters rp and R‘ (the Rydberg constant) to
match theQED calculations8 to themeasured transition frequencies4–7

in H: 1S–2S on the one hand, and 2S{n‘ n‘~2P,4,6,8S=D,12Dð Þ on
the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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muonic hydrogen Lamb shift measurement

built a new beam-line for low-energy negative muons (,5 keV kinetic
energy) that yields an order of magnitude more muon stops in a small
low-density gas volume than a conventional muon beam17. Slow m2

enter a 5 T solenoid and are detected in two transmission muon
detectors (sketched in Fig. 2 and described in Methods), generating
a trigger for the pulsed laser system.

The muons are stopped in H2 gas at 1 hPa, whereby highly excited
mp atoms (n < 14) are formed18. Most of these de-excite quickly to the
1S ground state19, but ,1% populate the long-lived 2S state20 (Fig. 1a).
A short laser pulse with a wavelength tunable around l < 6mm enters
the mirror cavity21 surrounding the target gas volume, about 0.9ms
after the muon stop. 2SR2P transitions are induced on resonance
(Fig. 1b), immediately followed by 2PR1S de-excitation via emission
of a 1.9 keV X-ray (lifetime t2P 5 8.5 ps). A resonance curve is
obtained by measuring at different laser wavelengths the number of
1.9 keV X-rays that occur in time-coincidence with the laser pulse. The
laser fluence of 6 mJ cm22 results in a 2S–2P transition probability on
resonance of about 30%.

The lifetime of the mp 2S state, t2S, is crucial for this experiment. In
the absence of collisions, t2S would be equal to the muon lifetime of
2.2 ms. In H2 gas, however, the 2S state is collisionally quenched, so
that t2S < 1 ms at our H2 gas pressure of 1 hPa (ref. 20). This pressure
is a trade-off between maximizing t2S and minimizing the muon stop

volume (length / 1/pressure) and therefore the laser pulse energy
required to drive the 2S–2P transition.

The design of the laser (Fig. 3 and Methods) is dictated by the need
for tunable light output within t2S after a random trigger by an
incoming muon with a rate of about 400 s21. The continuous wave
(c.w.) light at l < 708 nm of a tunable Ti:sapphire laser is pulse-
amplified by frequency-doubled light from a c.w.-pumped Yb:YAG
disk laser22,23. The c.w. Ti:sapphire laser is locked to a Fabry–Perot
cavity with a free spectral range (FSR) of 1,497.332(3) MHz. The
pulsed light24,25 is shifted to l < 6mm by three sequential vibrational
Stokes shifts in a Raman cell26 filled with H2.

Tuning the c.w. Ti:sapphire laser at l < 708 nm by a frequency
difference Dn results in the same Dn detuning of the 6mm light after
the Raman cell. During the search for the resonance, we scanned the
laser in steps of typically 6 FSR < 9 GHz, not to miss the 18.6-GHz-
wide resonance line. The final resonance scan was performed in steps
of 2 FSR. For the absolute frequency calibration, we recorded several
absorption spectra of water vapour at l < 6 mm, thereby eliminating
possible systematic shifts originating from the Ti:sapphire laser or the
Raman process. By H2O absorption, we also determined the laser
bandwidth of 1.75(25) GHz at 6mm.

For every laser frequency, an accumulated time spectrum of Ka

events was recorded using large-area avalanche photo-diodes27

(LAAPDs). Their typical time and energy resolutions for 1.9 keV
X-rays are 35 ns and 25% (full-width at half maximum), respectively.
The resulting X-ray time spectra are shown for laser frequencies on
and off resonance in Fig. 4. The large ‘prompt’ peak contains the
,99% of the muons that do not form metastable mp(2S) atoms
and proceed directly to the 1S ground state (Fig. 1a). This peak helps
to normalize the data for each laser wavelength to the number of mp
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Figure 1 | Energy levels, cascade and experimental principle in muonic
hydrogen. a, About 99% of the muons proceed directly to the 1S ground
state during the muonic cascade, emitting ‘prompt’ K-series X-rays (blue).
1% remain in the metastable 2S state (red). b, The mp(2S) atoms are
illuminated by a laser pulse (green) at ‘delayed’ times. If the laser is on
resonance, delayed Ka X-rays are observed (red). c, Vacuum polarization
dominates the Lamb shift in mp. The proton’s finite size effect on the 2S state
is large. The green arrow indicates the observed laser transition at l 5 6mm.
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Figure 2 | Muon beam. Muons (blue) entering the final stage of the muon
beam line pass two stacks of ultra-thin carbon foils (S1, S2). The released
electrons (red) are separated from the slower muons by E3B drift in an
electric field E applied perpendicularly to the B 5 5 T magnetic field and are
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atoms formed. Themeasurement times varied between 3 and 13 h per
laser wavelength. The 75-ns-long laser time window, in which the
laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
intervals.

Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
originates exclusively from our laser wavelength calibration proced-
ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
relative spacingbetween the 5 lines agreeswith thepublishedones.One
suchmeasurement of awater vapour absorption line is shown in Fig. 5.
Our quoted uncertainty of 300MHz comes from pulse to pulse fluc-
tuations and a broadening effect occurring in the Raman process. The
FSRof the reference Fabry–Perot cavity does not contribute, as the FSR
is known better than 3 kHz and the whole scanned range is within 70
FSR of thewater line. Other systematic correctionswe have considered
are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
(,1MHz), Doppler shift (,1MHz) and pressure shift (,2MHz).
Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30

and do not contribute to our observed signal. Also, the width of our
resonance line agrees with the expectedwidth, whereasmolecular lines
would be wider.

The centroid position of the 2SF~1
1=2 {2PF~2

3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy of DẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
We note that 0.31meV is 64 times the claimed uncertainty of equation
(1).

TheCODATAdeterminationof rp canbe seen in a simplifiedpicture
as adjusting the input parameters rp and R‘ (the Rydberg constant) to
match theQED calculations8 to themeasured transition frequencies4–7

in H: 1S–2S on the one hand, and 2S{n‘ n‘~2P,4,6,8S=D,12Dð Þ on
the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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muonic hydrogen Lamb shift measurement

built a new beam-line for low-energy negative muons (,5 keV kinetic
energy) that yields an order of magnitude more muon stops in a small
low-density gas volume than a conventional muon beam17. Slow m2

enter a 5 T solenoid and are detected in two transmission muon
detectors (sketched in Fig. 2 and described in Methods), generating
a trigger for the pulsed laser system.

The muons are stopped in H2 gas at 1 hPa, whereby highly excited
mp atoms (n < 14) are formed18. Most of these de-excite quickly to the
1S ground state19, but ,1% populate the long-lived 2S state20 (Fig. 1a).
A short laser pulse with a wavelength tunable around l < 6mm enters
the mirror cavity21 surrounding the target gas volume, about 0.9ms
after the muon stop. 2SR2P transitions are induced on resonance
(Fig. 1b), immediately followed by 2PR1S de-excitation via emission
of a 1.9 keV X-ray (lifetime t2P 5 8.5 ps). A resonance curve is
obtained by measuring at different laser wavelengths the number of
1.9 keV X-rays that occur in time-coincidence with the laser pulse. The
laser fluence of 6 mJ cm22 results in a 2S–2P transition probability on
resonance of about 30%.

The lifetime of the mp 2S state, t2S, is crucial for this experiment. In
the absence of collisions, t2S would be equal to the muon lifetime of
2.2 ms. In H2 gas, however, the 2S state is collisionally quenched, so
that t2S < 1 ms at our H2 gas pressure of 1 hPa (ref. 20). This pressure
is a trade-off between maximizing t2S and minimizing the muon stop

volume (length / 1/pressure) and therefore the laser pulse energy
required to drive the 2S–2P transition.

The design of the laser (Fig. 3 and Methods) is dictated by the need
for tunable light output within t2S after a random trigger by an
incoming muon with a rate of about 400 s21. The continuous wave
(c.w.) light at l < 708 nm of a tunable Ti:sapphire laser is pulse-
amplified by frequency-doubled light from a c.w.-pumped Yb:YAG
disk laser22,23. The c.w. Ti:sapphire laser is locked to a Fabry–Perot
cavity with a free spectral range (FSR) of 1,497.332(3) MHz. The
pulsed light24,25 is shifted to l < 6mm by three sequential vibrational
Stokes shifts in a Raman cell26 filled with H2.

Tuning the c.w. Ti:sapphire laser at l < 708 nm by a frequency
difference Dn results in the same Dn detuning of the 6mm light after
the Raman cell. During the search for the resonance, we scanned the
laser in steps of typically 6 FSR < 9 GHz, not to miss the 18.6-GHz-
wide resonance line. The final resonance scan was performed in steps
of 2 FSR. For the absolute frequency calibration, we recorded several
absorption spectra of water vapour at l < 6 mm, thereby eliminating
possible systematic shifts originating from the Ti:sapphire laser or the
Raman process. By H2O absorption, we also determined the laser
bandwidth of 1.75(25) GHz at 6mm.

For every laser frequency, an accumulated time spectrum of Ka

events was recorded using large-area avalanche photo-diodes27

(LAAPDs). Their typical time and energy resolutions for 1.9 keV
X-rays are 35 ns and 25% (full-width at half maximum), respectively.
The resulting X-ray time spectra are shown for laser frequencies on
and off resonance in Fig. 4. The large ‘prompt’ peak contains the
,99% of the muons that do not form metastable mp(2S) atoms
and proceed directly to the 1S ground state (Fig. 1a). This peak helps
to normalize the data for each laser wavelength to the number of mp
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Figure 1 | Energy levels, cascade and experimental principle in muonic
hydrogen. a, About 99% of the muons proceed directly to the 1S ground
state during the muonic cascade, emitting ‘prompt’ K-series X-rays (blue).
1% remain in the metastable 2S state (red). b, The mp(2S) atoms are
illuminated by a laser pulse (green) at ‘delayed’ times. If the laser is on
resonance, delayed Ka X-rays are observed (red). c, Vacuum polarization
dominates the Lamb shift in mp. The proton’s finite size effect on the 2S state
is large. The green arrow indicates the observed laser transition at l 5 6mm.
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beam line pass two stacks of ultra-thin carbon foils (S1, S2). The released
electrons (red) are separated from the slower muons by E3B drift in an
electric field E applied perpendicularly to the B 5 5 T magnetic field and are
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Figure 3 | Laser system. The c.w. light of the Ti:sapphire (Ti:Sa) ring laser
(top right) is used to seed the pulsed Ti:sapphire oscillator (‘osc.’; middle). A
detected muon triggers the Yb:YAG thin-disk lasers (top left). After second
harmonic generation (SHG), this light pumps the pulsed Ti:Sa oscillator and
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cavity (FP). Frequency calibration is always performed at l 5 6mm using
H2O absorption. See Online Methods for details.
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t
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= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
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reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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A global analysis combining Mainz and other world
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certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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ment include only a small part of the total uncertainty.
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yses of Mainz and world data. To determine an opti-
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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on rE and rM found using our default fit both to the
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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yses of Mainz and world data. To determine an opti-
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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& 0.5 GeV2, with negligible improvement be-
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max
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yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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• potentially large impact of QED radiative corrections on 
proton radius puzzle
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compute/resum large logarithms details: 1605.02613
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
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lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
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by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
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atic e↵ects in higher Q

2 data, we take for definiteness

}
potentially 

large 
uncertainty 

from radiative 
corrections
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Tension between radius extracted from different Q2 ranges

• potentially large impact of QED radiative corrections on 
proton radius puzzle

• same formalism applies to neutrino processes, impacting νe/νμ 

cross section ratios, critical for long baseline oscillation program

• soft-collinear effective theory developed to systematically 
compute/resum large logarithms details: 1605.02613
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• progress in neutrino cross sections critical for 
probing new physics of the neutrino sector

• z expansion + lattice QCD: model independent analysis 
of elementary signal process σ(νℓ n→ ℓ- p)

• soft-collinear effective theory: radiative corrections to 
σ(νe n→ e- p)/σ(νμ n→ μ- p)

• active field, modern theory techniques: soft-collinear 
effective theory, lattice gauge theory, ab initio nuclear responses

• many unavoidable connections with other 
intensity/cosmic/energy frontier problems

Summary
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In final determination :

- include correlated efficiency correction (for each dataset)

- include additional uncorrelated error to achieve 
Χ2/d.o.f.  = 1 ( δN/N ≈ 10% )

- joint fit to all data (ANL, BNL, FNAL)
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FIG. 2. Best fit curves and errors propagated from deu-
terium to free-neutron cross section, for BNL1981 (top pane),
ANL1982 (middle pane) and FNAL1983 (bottom pane). Blue
(horizontal stripes) corresponds to dipole and red (vertical
stripes) to Na = 4 z expansion in Table IV.
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as in the FNAL1983 results of Fig. 1 and Fig. 2.
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and FNAL (green).

A. Form factor scheme dependence

A test with variations of the number of free parameters
was presented in Eq. (20) of the previous section. In order
to translate other test fits into parameters that can be
compared side-by-side, we will consider in all cases the
dimensionless shape parameter defined by

ā
1

⌘ a
1

|t
0

=

¯t
0

⌘ �4(t
cut

� t̄
0

)F 0

A(t̄0) , (22)

see: 1603.03048
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total data sample from all exposures of the
chamber.

II. EXPERIMENTAL ARRANGEMENT

The 12.4-GeV/c proton beam was extracted
from the Zero Gradient Synchrotron and focused
onto a beryllium target. The positive hadrons pro-
duced in the p-Be collisions were focused toward
the bubble chamber by two magnetic horns. Neu-
trinos from the decay of the pions and kaons in
the 30-m-long drift space traversed the bubble
chamber. A shield in front of the bubble chamber
removed all particles except neutrinos.
The neutrino flux was calculated utilizing the

measured yields of pions in p-Be collisions and
propagating the particles through the horn system
and decay tunnel. We estimate the flux uncertain-
ty to be +15% except at the highest energies
where the lack of measurements of K+ production
leads us to assign a +25% uncertainty. The flux
peaks at -0.5 GeV/c and has fallen by an order
of magnitude at a neutrino energy of 2 GeV/c . A
detailed description of the experiment, including
the flux measurement, is given in our previous pub-
lication.
The film was scanned at each of the collaborat-

ing institutions and all one-, two-, and three-prong
events recorded. All of the film used for the
analysis of quasielastic scattering was double-
scanned and some was triple-scanned. The overall
scanning efficiency was (98+2)% for events
within a fiducial volume. The scanning efficiency
varied slightly with Q is shown in Fig. 1, and an
efficiency correction was made as a function of 400 I

[
I

this variable.
For part of the second run, thin tantalum plates

were used in the downstream end of the chamber.
We discarded all events originating within or
downstream of the plates since the boiling around
the plate supports degraded the visibility in this re-
gion.
To estimate the level of contamination in the

quasielastic channel, we studied the quantities
M =(Eq+Ep+Ep Mg)——( Pp+Pq+Pp ) and

a, the angle between the known neutrino beam
direction and the reconstructed visible momentum.
For neutrino events, both quantities should cluster
near zero. Scatter plots of the events in the M:a
space show such a clustering and give an estimat-
ed total background of (2+2) %.
The contamination from events of the channel

v&d ~IJ, n. pp, was estimated by taking events of
the reaction, v&d ~p m+pn„deleting the m+
track, and refitting to the v„d~p pp, hypothesis.
Monte Carlo simulations were also made. Both
methods yielded (1+1)% for the ir background.
All events of the two- and three-prong topolo-

gies were fitted to the vied jM pp, hypothesis.
Events satisfying this hypothesis were examined by
a physicist to verify consistency with such visual
information as ionization, decays, or scatters.
For two-prong events, the spectator momentum

is not measured, so in the fitting process we as-
signed 0+50 MeV/c to each Cartesian projection
of the spectator momentum. Figure 2 shows the
resulting distribution in spectator proton momen-
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FIG. 1. Scanning efficiency as a function of momen-

tum transfer squared.

Spectator hhomentum (QeV/c)

FIG. 2. Spectator-proton momentum distribution.
Three-prong events are shown as cross-hatched. The
solid curve is the normalized Hulthen distribution.

12

the bubble chamber data. For example, Fig. 1 of ANL
1982 [66] includes an estimate of the scanning e�ciency
ranging from e = 90±7% at 0.05GeV2 < Q2 < 0.1GeV2

to e = 98±1% for Q2 > 0.15GeV2. We include a possible
correlated e�ciency correction by comparing nominal fits
with a new fit obtained by the replacing the e�ciency-
corrected number of events,

dN

e(Q2)
! dN

e(Q2) + de(Q2)
=

dN

e(Q2)

✓
1 + ⌘e

de(Q2)

e(Q2)

◆
�1

.

(34)
Here ⌘e = 0 ± 1 is a parameter introduced in the fit,
and we use a simple linear interpolation of the function
in Ref. [66] for the e�ciency e(Q2) and e�ciency error
de(Q2).

In the BNL dataset, an e�ciency e↵ect with similar
magnitude is presented, but not directly in the Q2 vari-
able. For simplicity we take the ANL function to rep-
resent possible e↵ects in both BNL and FNAL datasets,
with independent floating scale parameters ⌘ = 0 ± 1 in
Eq. (34).

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (without)

[1.98(13), 26.9] (with)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (without)

[2.27(11), 28.1] (with)
,

FNAL : [ā
1

, �2LL] =

(
[1.87(25), 8.1] (without)

[1.87(25), 8.7] (with)
.

(35)

[rjh: How did -2LL get bigger after allowing for cor-
rection?] [rjh: Report preferred value of ⌘] In
each case there is only a small or modest improvement
in the fit quality, and small impact on the form factor
shape. Acceptance corrections within the quoted range
have only minor impact.

3. Nuclear corrections

We have so far not revisited the simple deuteron cor-
rection model of Singh [57] that was employed in the orig-
inal deuterium analyses to relate deuteron and neutron
cross sections, Eqs. (2) and (4). An example of a more
sophisticated potential model computation, albeit with-
out a quoted error, is provided for certain kinematics by
Shen et al. in Ref. [58].16 A comparison of the models is
displayed in Fig. 6, overlaid with the di↵erential cross sec-
tion computed for neutrino scattering on a free neutron.
In the model of Ref. [57], the deutron cross section is as-
sumed to approach the free-neutron result, with small or
negligible corrections above Q2 ⇡ 0.1GeV2. In contrast,

16 See also Ref. [21].
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FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The dashed (red) curve is the free-
neutron result. The bottom solid (red) curve is obtained from
the free-neutron result using the model from Ref. [57], as in
the original deuterium analyses. The top solid (black) curve is
extracted at E⌫ = 1GeV from Ref. [58]. The charged lepton
mass is neglected in this plot.

the model of Ref. [58] deviates from the free-neutron re-
sult, at the ⇠ 20% level, over a broad Q2 range. [rjh:
Further discussion of reconstruction e↵ects?] The
size of the e↵ect suggests that this is an avenue for fu-
ture work, even if there are no future deuterium mea-
surements.
Assuming an energy-independent deuteron correction

with Q2-dependence given by the Shen curve in place of
the Singh curve yields

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (Singh)

[2.15(14), 24.7] (Shen)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (Singh)

[2.45(13), 28.4] (Shen)
,

FNAL : [ā
1

, �2LL] =

(
[1.87(25),8.1] (Singh)

[1.99(25),9.0] (Shen)
.

(36)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, but there is little or no improve-
ment in fit quality.

D. Final systematic error budget

We have analyzed a range of sources for systematic
errors. Our self-consistent treatment of flux based on

- experimental acceptance/efficiency correction

allow for correlated variation: η=0 ± 1 

ANL, PRD 26, 537 (1982)

data prefer η≠0 (ANL: η=-1.9, BNL: η=-1), but no significant 
improvement in fit quality

see: 1603.03048
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6

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit. We investigate fits using a
range of k

max

, other choices of t
0

, and alternatives to
Eqs. (17) and (18), which are briefly reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (13). We use the scheme choice (15), enforce the
sum rule constraints (16), and use the default bounds
on the coe�cients ak in Eqs. (17), (18). The results are
summarized in Table IV and displayed in Figs. 1 and 2.
The coe�cients corresponding to the fits with Na = 4
free parameters in Table IV are

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.24(10), 0.6(1.0), -5.4(2.4), 2.2(2.7)] (BNL)

[2.25(10), 0.2(0.9), -4.9(2.3), 2.7(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(19)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

Table IV summarizes z expansion fits with di↵erent
numbers of free parameters. Focusing on the first order
coe�cient,

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.23(10), 2.23(10), 2.02(14) ] , Na = 3

[2.24(10), 2.25(10), 2.02(14) ] , Na = 4

[2.22(10), 2.25(10), 2.02(14) ] , Na = 5

. (20)

As discussed after Eq. (15), z2, z3, z4, etc., terms in the
z expansion become increasingly irrelevant, correspond-
ing to |z|

max

⌧ 1 in Table III. This is borne out by the
data, which determines a form factor with coe�cients in
Eq. (19) of order 1.0 that mostly don’t push the Gaus-
sian bounds, and a leading coe�cient in Eq. (20) that
is approximately the same regardless of whether terms
beyond order z3 are included.

The axial “charge” radius is defined via the form factor
slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (21)

For a general scheme choice t
0

6= 0, this quantity de-
pends on all the coe�cients in the z expansion. Table IV
illustrates that rA is poorly constrained without the re-
strictive dipole assumption. We will provide a final value
for the axial radius from deuterium data after discussion
of systematic errors in the next section.

The normalization factor N
fit

is also included in Ta-
ble IV. This parameter is allowed to float without
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV, for BNL1981
(top pane), ANL1982 (middle pane) and FNAL1983 (bottom
pane).
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The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit. We investigate fits using a
range of k

max

, other choices of t
0

, and alternatives to
Eqs. (17) and (18), which are briefly reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (13). We use the scheme choice (15), enforce the
sum rule constraints (16), and use the default bounds
on the coe�cients ak in Eqs. (17), (18). The results are
summarized in Table IV and displayed in Figs. 1 and 2.
The coe�cients corresponding to the fits with Na = 4
free parameters in Table IV are
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where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

Table IV summarizes z expansion fits with di↵erent
numbers of free parameters. Focusing on the first order
coe�cient,
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As discussed after Eq. (15), z2, z3, z4, etc., terms in the
z expansion become increasingly irrelevant, correspond-
ing to |z|
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⌧ 1 in Table III. This is borne out by the
data, which determines a form factor with coe�cients in
Eq. (19) of order 1.0 that mostly don’t push the Gaus-
sian bounds, and a leading coe�cient in Eq. (20) that
is approximately the same regardless of whether terms
beyond order z3 are included.

The axial “charge” radius is defined via the form factor
slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (21)

For a general scheme choice t
0

6= 0, this quantity de-
pends on all the coe�cients in the z expansion. Table IV
illustrates that rA is poorly constrained without the re-
strictive dipole assumption. We will provide a final value
for the axial radius from deuterium data after discussion
of systematic errors in the next section.

The normalization factor N
fit

is also included in Ta-
ble IV. This parameter is allowed to float without
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV, for BNL1981
(top pane), ANL1982 (middle pane) and FNAL1983 (bottom
pane).

• Poor fit quality, symptom of underestimated systematic errors

see: 1603.03048
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Dipole and z expansion yield different FA

(recall floating normalization and self-
consistent flux: different FA can yield
similar dN/dQ2 in fit range)
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FIG. 2. Best fit curves and errors propagated from deu-
terium to free-neutron cross section, for BNL1981 (top pane),
ANL1982 (middle pane) and FNAL1983 (bottom pane). Blue
(horizontal stripes) corresponds to dipole and red (vertical
stripes) to Na = 4 z expansion in Table IV.
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as in the FNAL1983 results of Fig. 1 and Fig. 2.
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A. Form factor scheme dependence

A test with variations of the number of free parameters
was presented in Eq. (20) of the previous section. In order
to translate other test fits into parameters that can be
compared side-by-side, we will consider in all cases the
dimensionless shape parameter defined by

ā
1

⌘ a
1

|t
0

=

¯t
0

⌘ �4(t
cut

� t̄
0

)F 0

A(t̄0) , (22)
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A. Form factor scheme dependence

A test with variations of the number of free parameters
was presented in Eq. (20) of the previous section. In order
to translate other test fits into parameters that can be
compared side-by-side, we will consider in all cases the
dimensionless shape parameter defined by
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The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit. We investigate fits using a
range of k

max

, other choices of t
0

, and alternatives to
Eqs. (17) and (18), which are briefly reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (13). We use the scheme choice (15), enforce the
sum rule constraints (16), and use the default bounds
on the coe�cients ak in Eqs. (17),(18). The results are
summarized in Table IV and displayed in Figs. 1 and 2.
The coe�cients corresponding for the fits with Na = 4
free parameters in Table IV are

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.24(10), 0.6(1.0), -5.4(2.4), 2.2(2.7)] (BNL)

[2.25(10), 0.2(0.9), -4.9(2.3), 2.7(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(19)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

Table IV summarizes z expansion fits with di↵erent
numbers of free parameters. Focusing on the first order
coe�cient,
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[2.23(10), 2.23(10), 2.02(14) ] , Na = 3

[2.24(10), 2.25(10), 2.02(14) ] , Na = 4

[2.22(10), 2.25(10), 2.02(14) ] , Na = 5

. (20)

As discussed after Eq. (15), z2, z3, z4, etc., terms in the
z expansion become increasingly irrelevant, correspond-
ing to |z|

max

⌧ 1 in Table III. This is borne out by the
data, which determines a form factor with coe�cients in
Eq. (19) of order 1.0 that mostly don’t push the Gaus-
sian bounds, and a leading coe�cient in Eq. (20) that
is approximately the same regardless of whether terms
beyond order z3 are included.

The axial “charge” radius is defined via the form factor
slope at q2 = 0,

1
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For a general scheme choice t
0

6= 0, this quantity de-
pends on all the coe�cients in the z expansion. Table IV
illustrates that rA is poorly constrained without the re-
strictive dipole assumption. We will provide a final value
for the axial radius from deuterium data after discussion
of systematic errors in the next section.

The normalization factor N
fit

is also included in Ta-
ble IV. This parameter is allowed to float without
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV, for BNL1981
(top pane), ANL1982 (middle pane) and FNAL1983 (bottom
pane).

bounds, but returns values consistent with the approxi-
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range of k
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Eqs. (17) and (18), which are briefly reported in Sec. IV.
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Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (13). We use the scheme choice (15), enforce the
sum rule constraints (16), and use the default bounds
on the coe�cients ak in Eqs. (17),(18). The results are
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where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.
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numbers of free parameters. Focusing on the first order
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As discussed after Eq. (15), z2, z3, z4, etc., terms in the
z expansion become increasingly irrelevant, correspond-
ing to |z|

max

⌧ 1 in Table III. This is borne out by the
data, which determines a form factor with coe�cients in
Eq. (19) of order 1.0 that mostly don’t push the Gaus-
sian bounds, and a leading coe�cient in Eq. (20) that
is approximately the same regardless of whether terms
beyond order z3 are included.

The axial “charge” radius is defined via the form factor
slope at q2 = 0,
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6= 0, this quantity de-
pends on all the coe�cients in the z expansion. Table IV
illustrates that rA is poorly constrained without the re-
strictive dipole assumption. We will provide a final value
for the axial radius from deuterium data after discussion
of systematic errors in the next section.

The normalization factor N
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is also included in Ta-
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV, for BNL1981
(top pane), ANL1982 (middle pane) and FNAL1983 (bottom
pane).

bounds, but returns values consistent with the approxi-

see: 1603.03048
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FIG. 6: Same as Fig. 5, but including recoil and nuclear charge corrections (i.e., two photon

exchange and proton vertex corrections).

IV. DISCUSSION

The precision of electron-proton scattering experiments has reached a level demanding

systematic analysis of subleading radiative corrections at two loop order and beyond. We

have presented the general framework that separates physical scales in the scattering process,

allowing a systematic merger of fixed order perturbation theory with large log resummation.

The quantum field theory analysis reveals implicit conventions and assumptions that

often di↵er between applications, such as between scattering and bound state problems.

The definition of the proton charge and magnetic radii in the presence of electromagnetic

radiative corrections is naturally defined in Eq. (12). A comparison to other definitions in

the literature is presented in Appendix B. The separation of soft and hard scales in two

photon exchange is similarly ambiguous in standard treatments. The common Maximon-

Tjon convention [37] implicitly takes momentum-dependent factorization scale µ2 = Q2 for

two-photon exchange, in conflict with the Q2-independent choice µ2 = M2 that is closest to

the implicit convention for vertex corrections.

The exponentiation and cancellation of infrared singularities [10] in physical processes

has often been used to motivate a simple exponentiation of first order corrections in order
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Comparison to previous implementations of radiative corrections, e.g. 
in A1 collaboration analysis of electron-proton scattering data
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FIG. 7: Comparison of complete next to leading order resummed correction (soled black band) to

naive exponentiations using di↵erent factorization scales for the two photon exchange correction:

µ2 = M2 (dotted red line) and µ2 = Q2 (dashed blue line). See text for details.

to resum logarithmically enhanced radiative corrections at second- and higher-order in per-

turbation theory [7, 41]. This procedure fails to capture subleading logarithms, beginning

at order ↵2L3 = O(↵
1
2 ), in our counting ↵L2 = O(1), cf. Eq. (32). These large logarithms

are automatically generated in the renormalization analysis that the e↵ective theory makes

possible. The convergence of resummed perturbation theory is illustrated, for the complete

problem including proton structure and recoil, in Fig. 6. A comparison of the resummed

prediction to the naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to di↵erent scale choices implicit in di↵erent two-

photon exchange corrections.8 These ansaztes di↵er at the percent level in the considered

kinematic range, and fall well outside the error band represented by the complete next-to-

leading order resummed prediction.

Special attention has been paid to the e↵ects of real emission beyond tree level. Soft-

8 For example, the so-called McKinley-Feshbach correction [42] represents the large-M limit of the hard-

coe�cient contribution to two-photon exchange, and is independent of factorization scale µ. Using this

correction [7] results in an irreducible factorization-scale uncertainty, uncanceled between matrix element

and coe�cient.

23

resummed EFT result

naive exponentiation of 1-loop, 
(μ2=Q2 in two-photon piece)

naive exponentiation of 1-loop, 
(μ2=M2 in two-photon piece)

- complete analysis: account for floating normalizations, correlated 
shape variations when fitting together with backgrounds 

- discrepancies at 0.5-1% compared to currently applied radiative 
correction models (cf. 0.2-0.5% systematic error budget of A1)

- conflicting implicit scheme choices for 1PE and 2PE 
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Broader context: Sudakov logs ubiquitous, appear whenever kinematic 
invariants large compared to particle masses.   Poor convergence, or even 
breakdown of fixed order perturbation theory

- massive boson production 
at proton collider

- dark matter annihilation

- Lepton-nucleon scattering ↵ log

2 Q2

m2
e

Effective theories differ in detail.   For lepton-nucleon scattering: explicit 
lepton mass, bremsstrahlung energy cut, nuclear recoil and charge 
corrections

qT ⇠ GeV

MDM ⇠ TeV

Q ⇠ GeV

↵s log
2 m2

Z

q2T

↵2 log
2 M2

DM

m2
W


