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Overview

introduction: importance of accelerator
neutrino cross sections (Ey ~ GeV)

deuteron constraints on the elementary signal

process O(Ven— £  p)

1603.03048, with A. Meyer, M. Betancourt and R. Gran and related work with B.
Bhattacharya and G. Paz

new formalism for radiative corrections impacting
G(Ven— e p)/O(Vun— Y p)

1605.02613, and related work with J.Arrington, G. Lee

summary
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QCD in many regimes critical to extracting fundamental physics in the
neutrino sector
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Every neutrino-nucleus cross section prediction relies on nucleon-
level amplitudes constrained by deuterium experiments of the 1970’s
and 80’s, fit to simple models. What is the actual uncertainty?



Start with the basic process

Vu><u- o(vn — pp) = | - @ .

poorly known axial-vector form factor

A common ansatz for Fa has been employed for the last ~40 years:

2 —2

ipole q
Fjp ] (qQ) :FA(O) (1— —m2>
A

Inconsistent with QCD.

Typically quoted uncertainties are (too) small (e.g. compared to proton
charge form factor)

1 dFa

1
= <7 ra = 0.674(9) fm




Best source of almost-free neutrons: deuterium so
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Best source of almost-free neutrons: deuterium

deuteron

v /IJ

n p

Deuterium bubble chamber data

- SmMa

- SMa

- small statistics, ~3000 events in world data
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n) experimental uncertainties
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HEP toolbox is being applied to precision lepton-nucleon scattering

Underlying QCD tells us that Taylor expansion in appropriate
variable is rapidly convergent

<
K. U

. particle thresholds
experimental

kinematic region

L \/tcut _ q2 - \/tcut — to

FA(C]2) — Z A [Z(qz)]k A touesto) = \/tcut — @+ tew — to

e

coefficients in rapidly
convergent expansion encode
nonperturbative QCD

Systematically improvable, quantifiable uncertainties
9



Adapt these tools for neutrino - hadron scattering

V|J IJ- Vu+n—>u'+ P,
/ 0 < Q%<3 GeV?

n P |Z|<035

* Event-level data from the deuterium experiments has been lost

* Ab initio flux estimates have poorly constrained systematics.

* Use published distributions in neutrino energy to determine flux:

1 dN
Ok, )dE, = dl,
2 o(E,, Fa)dE,

* Fit to published Q? distributions to determine Fa

* Reproduced results of original publications under same assumptions

* Replaced dipole Fa with model-independent z expansion

|10



Data are in tension with any Fa described by QCD
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To validate nuclear models for '2C, 'O, 40Ay, ... , should first master
?H (work remains - new experimental data would be very valuable)



- theoretical systematic: deuteron correction
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* An open problem to quantify uncertainty, especially at larger energy



* Fa with complete error budget, correlations:

a1, a2, a3, a4] = [2.30(13), —0.6(1.0), —3.8(2.5), 2.3(2.7)]

N,=4 z expansion i
m, = 1.014(14) dipole —
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Derived observables: 1) axial radius 1 dFy

r4 = 0.46(22) fm”
- a basic parameter of nucleon structure

- order of magnitude larger uncertainty compared to dipole fits

- impacts comparison to other data, e.g. pion electroproduction, muon
capture



Derived observables: 2) neutrino-nucleon quasi elastic cross sections

><1O'3? - - | %x107°°
> -_ _' 1> 5 M I\lla=l4lzllel>|(pansion |
_ : - : | E=] m, =1.014(14) dipole
E o i
W
© _ |
° i N,=4 z expansion
m, = 1.014(14) dipole
0 i ! R ! Lol
10 1 10
E.[GeV]
Tvmsip(Ey = 1GeV) = 10.1(0.9) x 107 cm? (~ T2K)
Tun—sup(Ey = 3GeV) = 9.6(0.9) x 1073% cm? (~ DUNE)



Perturbative

QFT
Precision Latti;e QCD
hadron
physics
Event generation and Nuclear
physics

detector modeling

The model independent z expansion has been implemented in GENIE
event generator for input to nuclear models



Derived observables: 3) neutrino-nucleus quasi elastic cross sections

x10°°
o0 I z expansion constrained by deuterium
T i | GENIE RFG z-expansion
% I + — GENIE RFG dipole “‘world average dipole”
15 | —4— MINERVA Data
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=2 10
A
C.g - New module for z
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- errors have different kinematic dependence than dialing ma in dipole
ansatz

- z expansion (with correlations, reweighting) coded in GENIE, can be
readily implemented with nuclear models
|18
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Practical obstacles to modern neutrino experiments with elementary
(hydrogen or deuterium) target. Lattice QCD is poised to contribute.



A. Meyer, A. Kronfeld, R|[H with Fermilab Lattice and MILC collaborations

Pion mass vs. lattice spacing Lattice Extent vs. Pion Mass
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Big lattices, multiple spacings, physical quark masses

Other targets: neutral currents; resonance couplings and form
factors; pion final states

Advantages: independent of detector-dependent radiative corrections and
nuclear effects (and for lattice QCD: no underground safety hazard)

20
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QED radiative corrections impact, e.g., Ve appearance signal. Validate
with electron-proton scattering. (Actually, progress in radiative
corrections required here also.)

21



Some facts about the Rydberg constant puzzle (a.k.a.
proton radius puzzle)
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2) The most mundane resolution necessitates:

* 50 shift in fundamental Rydberg constant
* discarding or revising decades of results in
e-p scattering and hydrogen spectroscopy
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Some facts about the Rydberg constant puzzle (a.k.a.

proton radius puzzle) i e
#

|) It has generated a lot of o
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attention and controversy

2) The most mundane resolution necessitates:
* 50 shift in fundamental Rydberg constant
* discarding or revising decades of results in
e-p scattering and hydrogen spectroscopy

This problem has broad ownership, e.g.:

3) Systematic effects in electron-proton
scattering impact neutrino-nucleus scattering,
at a level large compared to long baseline
precision requirements

“Thic good news is thagit’s
" not my problem”
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What is the proton charge radius?

recall scattering from extended classical charge distribution:

iz _ (1)
ds} ds} pointlike

for the relativistic, QM, case, define

(1) radius as slope of form factor
i d
<J'u> — ’y'uFl I 9 ot quQ ’I“E — Gd—GE( )
, D q q2=0
Gp=Fi+=F  Gy=F+F



Recall hydrogen spectrum:

2
Re T%
Lo, 2 ' 3
n n
2 2 _
heRy, = 1€ % C13.6eV proton charge radius

Disentangle 2 unknowns, Rx and rg, using well-measured 1S-2S
hydrogen transition and
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Recall hydrogen spectrum:

2
Re T%
Lo, 2 ' 3
n n
2 2 _
heRy, = 1€ % C13.6eV proton charge radius

Disentangle 2 unknowns, Rx and rg, using well-measured 1S-2S
hydrogen transition and

(1) another hydrogen interval

(2) electron-proton scattering determination of re

(3) a muonic hydrogen interval (2S-2P)

50 discrepancy in Rydberg constant from (1+2) versus (3)

24



muonic hydrogen Lamb shift measurement

Pohl et al., Nature 466,213 (2010)

measured frequency

8.4 meV
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muonic hydrogen Lamb shift measurement

Pohl et al., Nature 466,213 (2010)

expectation from

e-p scattering measured frequency

8.4 meV
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Tension between radius extracted from different Q? ranges
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Tension between radius extracted from different Q? ranges
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uncertainty
from radiative
corrections
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Tension between radius extracted from different Q? ranges
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* potentially large impact of QED radiative corrections on
proton radius puzzle

* soft-collinear effective theory developed to systematically
compute/resum large logarithms details: 1605.02613

* same formalism applies to neutrino processes, impacting Ve/Vy,
cross section ratios, critical for long baseline oscillation program
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Summary

progress in neutrino cross sections critical for
probing new physics of the neutrino sector

z expansion + lattice QCD: model independent analysis
of elementary signal process (Ve n— £~ p)

soft-collinear effective theory: radiative corrections to
o(ve n— e p)/O(Vy n— Y p)

active field, modern theory techniques: soft-collinear
effective theory, lattice gauge theory, ab initio nuclear responses

many unavoidable connections with other
intensity/cosmic/energy frontier problems

27
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o — - I see: 1603.03048

data / fit

In final determination :

- joint fit to all data (ANL, BNL, FNAL)

- include correlated efficiency correction (for each dataset)

- include additional uncorrelated error to achieve
X?%2/d.of. = | (6N/N ~ 0% )

30



- experimental acceptance/efficiency correction see: 1603.03048

allow for correlated variation: =0 % |

dN AN ~dN (1 de(Q2)>1

(@) " e(@) +de(Q%)  e(@%) " e(@?)

1.0 T - L T '% l ' >

T +—e—
> 1l
§ 09— -
£ osf ~
ANL, PRD 26,537 (1982)
0.7 ! | 1 | L | 1
0 0.1 0.2 0.3 0.4

FIG. 1. Scanning efficiency as a function of momen-
tum transfer squared.

data prefer N#0 (ANL: n=-1.9, BNL: n=-1), but no significant
improvement in fit quality
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see: 1603.03048

150 B —— N,=4 z expansion R g§=4| zfgtxpansion i
...... i i S Ipoe I
i Dipole fit 200 e ANL1982data |
N e BNL 1981 data _?

dN/dQ? [events/0.05 GeV?]

o

dN/dQ? [events/0.06 GeV?]

o

QZ[GeVZ] QZ[GGVZ]

* Poor fit quality, symptom of underestimated systematic errors
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Dipole and z expansion yield different Fa e

(0]
o

| T T T T | T T 15— o | A I_

—— N,=4 z expansion
------ Dipole fit
e FNAL 1983 data

()]
o

FNAL N,=4 z expansion

dN/dQ? [events/0.10 GeV?]
N
[ L B L B

20 Dipole fit
I ! L
. N | | 10" 1 10
0 0.5 1 1.5 EV[GeV]
QGeV?]
I
g ‘ — N, =4 z expansion
% 10 _ ------ dipole fit .
(recall floating normalization and self- £ |
consistent flux: different Fa can yield = |
similar dN/dQ? in fit range) S |
2 |
0
0
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H see: 1605.02613
). J(p) x S(p)

Ve _

total radiative
correction

2
. 1
numerically: al? = alog2 R 1 = ol ~ o2 ,etc.

electron energy: E =1GeV

electron energy loss cut: AE =5MeV
correct

~0.15 g

v through:
5 - 0.2 O(

c .9 a)
g g % -0.25 O(Oé%)
— = 03] (1
58 g
o 0.35

0 02 04 06 08 1
Q° (GeV?)
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see: 1605.02613
Comparison to previous implementations of radiative corrections, e.g.

in Al collaboration analysis of electron-proton scattering data

_ ey _ Naive exPonentlatlon of .I-I00p,
- AE =5Mevd . (M?=M? in two-photon piece)

.
.
.t

N
~ - 1 N
N

total radiative
correction
S S S ! |
¥ R R R S
I
-

Z . N . o Lo
- g naive exponentiation of |-loop,

P (M2=Q? in two-photon piece)
0 0.2 0.4 0.6 0.8 1

Q° (GeV?)

- discrepancies at 0.5-1% compared to currently applied radiative
correction models (cf. 0.2-0.5% systematic error budget of Al)

- conflicting implicit scheme choices for | PE and 2PE

- complete analysis: account for floating normalizations, correlated
shape variations when fitting together with backgrounds
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Broader context: Sudakov logs ubiquitous, appear whenever kinematic
invariants large compared to particle masses. Poor convergence, or even
breakdown of fixed order perturbation theory

- massive boson production 2
: o, log? —Z gr ~ GeV
at proton collider s 108 72 T
T
Do s M? ~
- dark matter annihilation sz log? —5M Mpw ~ TeV
My
) 2
- Lepton-nucleon scattering ~ «log”™ — Q ~ GeV
™

€

Effective theories differ in detail. For lepton-nucleon scattering: explicit
lepton mass, bremsstrahlung energy cut, nuclear recoil and charge
corrections
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