

paper results

Simone Michaele March 1997

Simone Michele Mazza – INFN Sezione di Milano and Dipartimer Fisica, Università di Milano, Milano, Italy

On behalf of the ATLAS collaboration

• ATLAS is one of the four main experiments at the LHC

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron
D Antiproton Decelerator CTE3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice
LEIR Low Energy Ion Ring LINAC LINear ACcelerator n=ToF Neutrons Time Of Flight

• ATLAS (A Toroidal LHC ApparatuS)

- 4 levels of detectors
 - Inner detector (pixel, strip, TRT)
 - Electromagnetic calorimeter
 - Hadronic calorimeter
 - Muon detector (MDT, CSC, RPC, TGC)
- Reconstruction and identification of objects (photons, muons, jets) is achieved using information from all detectors

RECONSTRUCTION AND IDENTIFICATION OF PHOTONS

- Photons reconstruction
 - From energy deposits in the electromagnetic calorimeter
 - Tracks to determine if the candidate is electron or photon converted/unconverted
 - Photons cluster reconstruction efficiency close to 100 %
 - Photons classification efficiency: 96%
- Photon identification
 - Based on discriminating variables measured in the calorimeters (different for converted/unconverted)
 - Two standard identification criteria: loose and tight
 - Tight ID efficiency: 85% at $E_T \sim 50$ GeV, 95% at $E_T \sim 200$ GeV
- Isolation in the calorimeter
 - Energy in a cone in the calorimeter of $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} = 0.4$
- Isolation in the inner detector
 - Tracks in the inner detector in a cone of ΔR = 0.2
 - Uncertainty on:
 - Photon energy scale at high E_T is (0.5–2.0)% (depending on η)
 - Photon energy resolution for $E_T = 300$ GeV is (30-45)% (depending on n)

Calorimeter Energy resolution

 $\frac{\sigma}{E} = \frac{10 - 17\%}{\sqrt{E / \text{GeV}}} \oplus 0.7\%$

RESONANCES IN THE DIPHOTON CHANNEL

Current di-photon searches ongoing in the ATLAS experiment:

Search for Graviton (spin 2)

- Randall Sundrum (RS) model
- Additional dimensions where only gravity propagates → Reduced effective value of the Planck scale in the SM brane
- For graviton the coupling with the SM k/M_{pl} is proportional to the width of the resonance
 - M_G and k/M_{pl} are free parameters
 - For 8 TeV analysis Graviton with k/M_{pl} = 0.1 excluded to 2.66 TeV

$\sigma \times BR(G^* \to \gamma\gamma)$ [pb] ATLAS Observed limit Expected limit √s= 8 TeV Expected $\pm 1\sigma$ $G^* \rightarrow \gamma \gamma$ Expected $\pm 2\sigma$ 10⁻¹ $-k/\overline{M}_{\rm Pl} = 0.01$ $- k/\overline{M}_{\rm Pl} = 0.03$ $-k/\overline{M}_{\rm Pl} = 0.05$ 10⁻² $-k/\overline{M}_{\rm Pl} = 0.1$ $dt = 20.3 \text{ fb}^{-1}$ 10⁻³ 10-4 0.5 2 2.5 1.5 3 m_{G^*} [TeV] CERN-PH-EP-2015-043

Search for another Higgs (spin 0)

- Several extension of Higgs sector foresee additional scalar states
- Narrow or wide resonance
- For 8 TeV analysis search up until 600 GeV, no significant excess found

DI PHOTON SELECTION

Tight identification criteria, $|\eta| < 2.37$, removing crack region

Graviton (spin 2) $P_{\tau}^{\gamma} > 55 \text{ GeV}$ Higgs (spin 0)

- Leading (subleading) photon
- $P_{T}^{\gamma}/M\gamma\gamma > 0.4 (0.3)$
- (better sensitivity for spin 0 resonance)

- Isolation < 0.022* P^γ_T + 2.45 GeV
- Isolation (tracks) < 0.05* P_{T}^{γ}
- Efficiency of isolation over tight ID for 2 photons: 90% to 96% (P_T 100,150 [GeV])
- Overall selection efficiency for a signal 70 % (spin 2) 60 % (spin 0)

Analysis strategy

- Select pure diphoton sample
- Model signal using MC
- Background using MC and data-driven methods
- Test the background only hypothesis over the signal+background hypothesis on data

SIGNAL PARAMETERIZATION

- The mass distribution is described by the convolution:
 - Of the detector resolution (a double sided crystal ball, DSCB) fitted on zero width samples (k/M_{pl} = 0.01)
 - With the predicted distribution of the mass line-shape at generator level (Breit Wigner - like)
- For spin-0, the line shape is described by an effective DSCB function
 - DSCB parameters are functions of mass and width of the scalar particle

Double Sided Crystal Ball (DSCB):

BACKGROUND MODELING (SPIN 2)

- Irreducible background shape (two photon from SM)
 - Shape is from LO MC (Sherpa after detector simulation) with NLO correction factors (diphox MC) as a function of M_{vv}
- Reducible background shape from a fit to data, in control regions, inverting photon identification criteria
 - eg: tight, anti-tight for γ-jet background
- Fractions of [γγ, γ-jet, jet-γ, jet-jet]
 are determined from data
 - In a control region [200-500] GeV
 - Isolation template fit: study the shape of the isolation variable to get the background decomposition

Technique explained here: CERN-PH-EP-2015-043

BACKGROUND MODELING (SPIN 0)

- Background is fitted to data with a functional form
- Spurious signal (SS) to test functional forms:
 - Using a very high statistic MC (irreducible) and data from control region (reducible) to build a full background template
 - Fit the template with signal + background (to be tested) for each mass hypotesis
 - SS is the number of fitted signal events on the background template
 - SS used as a systematic (centered at 0) uncertainty on Nsignal

Function chosen from a family of nested function

$$f_{(k)}(x; b, \{a_k\}) = N(1 - x^{1/3})^b x^{\sum_{j=0}^k a_j (\log x)^j},$$

- Number of free parameters = k + 2
- k = 0 was chosen with Fisher test
 - On functions passing spurious signal test
 - Minimum number of parameters to follow the background distribution

Systematic errors on background (spin 2)

- PDF variations of NLO MC
- Reducible: variation of the control region definition
- On background decomposition
- On isolation: matching reco/parton isolation selections
- Systematic errors on background (spin 0):
 - Spurious signal for the chosen function
- Around 750 GeV error of 2-4 % on the background estimation

Investigated signal region	Background from	Background from	
	MC extrapolation	functional form	
$m = 750 \text{ GeV}, \Gamma/m = 6\%$			
720–780 GeV, spin-2 selection	$20.1 \pm 0.3 \pm 0.7$	$21.9 \pm 1.2 \pm 0.4$	
720–780 GeV, spin-0 selection	$6.7 \pm 0.1 \pm 0.4$	$6.8 \pm 0.7 \pm 0.3$	
$m = 1500 \text{ GeV}, \Gamma/m = 6\%$			
1440–1560 GeV, spin-2 selection	$1.14 \pm 0.02 \pm 0.09$	$1.51 \pm 0.27 \pm 0.08$	
1440-1560 GeV, spin-0 selection	$0.32 \pm 0.01 \pm 0.04$	$0.33 \pm 0.11 \pm 0.04$	

- Systematic errors on signal
 - Shape: energy resolution
 - Yield: Identification, Isolation, ATLAS recorded luminosity

Uncertainty	Spin-2 search	Spin-0 search	
Signal mass resolution	+(30-60) tg	+(40-60)cz	
(mass dependent)	$-(20-40)^{70}$	$-(30-45)^{70}$	
Signal photon identification	$\pm (2-3)\%$		
(mass dependent)			
Signal photon isolation	$\pm (2-1)\%$	$\pm (4-1)\%$	
(mass dependent)			
Signal production process	N/A	$\pm (3-6)\%$	
		depending on Γ	
Trigger efficiency	±0.6%		
Luminosity	$\pm 5.0\%$		

PURITY OF THE SELECTED DI-PHOTON SAMPLE

- Purity of data was checked with two different techniques using independent assumptions
 - 4x4 matrix method
 - 2x2D sidebands method
 - Purity is > 90% over the whole mass spectrum for both selections

DI-PHOTON CANDIDATES INVARIANT MASS IN DATA, 3.2 FB⁻¹, \sqrt{S} = 13 TEV

STATISTIC ANALYSIS

Test of the compatibility of the data with the background only hypothesis

- Using frequentist techniques and profile likelihood ratio for μ (signal) ≥ 0
- Test each [mass, width] to find maximum local significance
- Maximum local significance around 750 GeV
 - $k/M_{pl} = 0.23$ (for spin 2) corresponding to $\Gamma = 57$ GeV
 - Γ = 45 GeV (for spin 0)

lpdated

Signal + background model

 $N_S f_S(m_{\gamma\gamma}) + N_B f_B(m_{\gamma\gamma}),$

LOCAL AND GLOBAL SIGNIFICANCE

Local significance is not sufficient need to evaluate the «look elsewhere effect» \rightarrow Global significance

- Searched in a large bidimensional phase space for $(M_{\chi}, \Gamma_{\chi})$
- To evaluate this effect background-only MC toys were used
- Evaluated in the range M_G [500, 2000] GeV and k/M_{pl} [0.01, 0.3] for spin 2
- Evaluated in the range M_H [500, 2000] GeV and Γ [0%, 10%] for spin 0
- For the excess at 750 GeV global significance is
 - Spin 2 selection: 2.1 σ
 - Spin 0 selection: 2.1 σ
 - Statistical uncertainty from the number of pseudo-experiments is ±0.05
- Compatibility between the two analyses is assessed with a bootstrap statistical procedure to generate pseudo-datasets
 - If spin-2 (spin-0) signal is assumed compatibility is 0.5 (0.2) σ
- Assuming zero-width spin 0 signal (NWA) a local significance of 2.9 σ is found
 - Difference in likelihood ratio from best fit (with highest significance) is 2.5 σ

Updated

LIMITS SETTING

- For spin-0 limits are in terms of the fiducial cross section (nearly model-independent)
- For spin-2 a specific benchmark model of a spin-2 graviton
 - Observed limit is compared with theory prediction (red line)
 - Graviton with $k/M_{pl} = 0.2$ excluded for $M_G < 4$ TeV
- Observed limits are within expected limits error bands (except for 750 GeV)

DI-PHOTON RESONANCES, SIMONE MAZZA ON BEHALF OF THE ATLAS COLLABORATION

New!

What about run1?

8 TeV data re-analysis

- Same kinematic selection as before, update of calibration and systematics
- For spin 2 selection no significant excess is observed
- For spin 0 selection there is 2 σ significance at 750 GeV
- Increase in the cross section (for 750 GeV): 4.7 (gluon, gluon), 2.7 (q, q)
 - Spin 2 compatibility run I-II: Gluon gluon production: 2.7 σ , qq production 3.3 σ
 - Spin 0 compatibility run I-II: Gluon gluon production: 1.2 σ , qq production 2.1 σ

KINEMATIC PROPRIETIES OF THE EXCESS REGION FULL COLLECTION OF PLOTS IN THE PAPER (OR IN BACKUP)

DI-PHOTON RESONANCES, SIMONE MAZZA ON BEHALF OF THE ATLAS COLLABORATION

NEW EXCITING RESULTS?!

- Result for $\sqrt{s} = 3.2$ fb⁻¹ of the 2015 data campaign was reviewed
 - Plots and results are public, paper will be submitted soon!
 - Preliminary results already presented December 2015
- An interesting feature was found in the diphoton channel for an invariant mass of 750 GeV
 - Several cross checks were done (both on detector level and on kinematic level)
 - No strange behavior seen yet
- To study the nature of the feature we are looking at new data
 - An updated result with 2016 data will be released soon
 - Stay tuned!

	Spin-2 Selection		Spin-0 Selection	
	Free	Narrow	Free	Narrow
	width	width	width	width
	13 TeV			
Mass for the largest excess	750 GeV	770 GeV	750 GeV	750 GeV
Width over mass for the largest excess	8%	-	6%	-
Local significance	3.8	3.3	3.9	2.9
Global significance	2.1		2.1	
	8 TeV			
Local significance	-		1.9	
(at 13 TeV best-fit)				
	8 TeV - 13 TeV Compatibility			
gluon-gluon scaling (4.7)	2.7	2.2	1.2	1.5
quark-antiquark scaling (2.7)	3.3	2.4	2.1	2.0

BACKUPS

RELATIVE CUTS EFFECT

Analysis	σ local	σ global	8 TeV compatibility
Scalar	3.9 σ	2 σ	$1.2 \sigma (gg) - 2.1 \sigma (qq)$
Graviton	3.8 σ	2.1 σ	$2.7 \ \sigma \ (gg) - 3.3 \ \sigma \ (qq)$

DI-PHOTON RESONANCES, SIMONE MAZZA ON BEHALF OF THE ATLAS COLLABORATION

BEHALF OF THE ATLAS COLLABORATION

BEHALF OF THE ATLAS COLLABORATION

BEHALF OF THE ATLAS COLLABORATION

22

BACKGROUND PARAMETERIZATION (SPIN 0)

• Function fit on data

$$f_{(k)}(x; b, \{a_k\}) = N(1 - x^{1/3})^b x^{\sum_{j=0}^k a_j (\log x)^j},$$

- To choose the number of free parameters: F-Test
 - k = 0 was chosen for spin 0 selection

$$F = \frac{\frac{\sum_{i} (y_i - f_1(x_i))^2 - \sum_{i} (y_i - f_2(x_i))^2}{p_2 - p_1}}{\frac{\sum_{i} (y_i - f_2(x_i))^2}{n - p_2}}$$

BKG PARAMETERIZATION

- Background composed by reducible (gamma-jet, di-jet) and irreducible (gamma gamma from SM)
- Irreducible shape is derived form a MC at LO (Sherpa fullsim) re-weighted with NLO corrections (diphox)
- Reducible shape is derived with a fin on data inverting ID criteria (ex: tight antitight for gamma-jet)

Composition of the four components ($\gamma\gamma$, γ -jet, jet- γ , jet-jet) is estimated with a data driven method

- Isolation template fit
- Studyu of the isolation variable shape in a low mass control region [200,500] GeV
- Total normalization of the background is fitted from data

What about run1?

8 TeV data re-analysis

- Same kinematic selection as before, update of calibration and systematics
- For spin 2 selection no significant eccess is observed
- For spin 0 selection there is 2 σ significance at 750 GeV
- Increase in the cross section: 4.7 (gluon, gluon), 2.7 (q, q)
 - Spin 2 compatibility run I-II: Gluon gluon production: 2.7 σ , qq production 3.3 σ
 - Spin 0 compatibility run I-II: Gluon gluon production: 1.2 σ , qq production 2.1 σ

Moriond 2016: Interpreting the 750 GeV digamma excess: a review

DI-PHOTON RESONANCES, SIMONE MAZZA ON BEHALF OF THE ATLAS COLLABORATION

