

Is there a X(750) signal?

Livia Soffi on behalf of the CMS Collaboration

Cornell University

Introduction

CMS CMS CMS CMS

- Bring LHC close to design parameters:
- Increase \sqrt{s} to 13 TeV - 3 fb⁻¹@13 TeV \rightarrow Run 1 sensitivity for M_x>≈2 TeV
- Dramatically increase discovery potential

Photon Reconstruction

- Reconstructed from the energy deposits in the ECAL, grouping them into superclusters.
- No associated tracks in the inner detectors
- Diphoton HLT Trigger with $E_T > 60 \text{ GeV}$
- Dedicated Photon ID for high- $p_{_T}$ objects

- 97% of total E contained in 5x5 matrix of crystals
- Crystal Saturation E: \rightarrow 1.7 (2.8) TeV

CMS-EGM-14-001

High-Mass Diphoton Search

Resonant production of high mass diphoton pairs generic prediction of several extensions of SM.

- Spin 0 → heavy scalar in non-minimal → 2HDM Higgs sectors
- Spin 2 \rightarrow models postulating the existence of \rightarrow ADD additional space-like dimensions \rightarrow RS

y = 0 $y = \pi R$

 Signature of resonant production: localized excess of events in the diphoton invariant mass spectrum.

CMS-EXO-16-018

What is new w.r.t. Dec `15?

	Mass range (GeV)	Channel-to-channel calibration constants	Dataset Used	Lumi (fb ⁻¹)	Spin interpretation
EXO-15-004	500-4500	Run 1	3.8 T	2.7	2
EXO-16-018	500-4500	Run2 -2015 data	3.8+0 T	3.3	0,2 Mar`16

- Data re-reconstruction, using updated channel-to-channel calibration, completed over the winter shutdown.
- Additional **0.6 fb**⁻¹ dataset, recorded at **B=0T** analyzed
 - Dedicated photon identification.
 - Dedicated vertex selection.
 - \rightarrow 10% improvement on top of the re-calibration.
- Results interpreted in terms of **spin-0 and spin-2** resonances.
 - \rightarrow J=0: assumed gluon-fusion production, J=2: RS-graviton
 - \rightarrow Three widths (Γ /m=1.4x10⁻⁴, 1.4x10⁻², 5.6x10⁻²)

CMS-EXO-16-018

New ECAL channel-to-channel calibration

- ECAL calibration crucial for energy resolution Mar 16
 - Over the winter shutdown data re-reconstructed using **new channel-to-channel calibration obtained for the 2015 dataset**.
 - CMS Simulation 13 TeV \rightarrow 30% improvement in m = 500 GeV $0.3 = \frac{\Gamma}{m} = 1.4 \times 10^{-4}$ mass resolution EBEB above 500GeV. Prompt-reco 0.2 Re-reco 0.15 \rightarrow ~10% improvement 0.1 in analysis sensitivity 0.05 Ω 440 460 480 500 520 540 560 m_{yy} (GeV)

Is there a X(750) signal?

СМЅ-ЕХО-16-018

0 T data challenges

 Significant re-thinking of the analysis needed to use data without magnetic field.

CMS Experiment at the LHC, CERN Data recorded: 2015-Sep-11 22:46:54.589056 GN Run / Event / LS: 256353 / 437637379 / 244

No information on tracks' Momenta

- Weakens power of isolation requirements
 - Complicates primary vertex selection

No energy spread due to brem/conversions

- Better intrinsic energy resolution
- Additional lateral shower profile information.

CMS-EXO-16-018

Mar`16

Is there a X(750) signal?

Vertex Identification

- Good mass resolution depends on choosing right vertex
 - \rightarrow B=3.8T: Multivariate method using recoil and tracks kinematics, trained for SM H $\rightarrow \gamma\gamma$
 - \rightarrow **B=OT**: Simpler algorithm based on <code>track-counting</code> Vertex with the highest track multiplicity

Mar`16

СМЅ-ЕХО-16-018

Analysis Overview

- Split events in categories: (EB-EB, EB-EE) x (3.8 T, 0 T)
- Search region: $M_{yy} > 500 \text{ GeV}$
- Select events with two photons of p₁ > 75 GeV
- Dedicated photon ID with isolation: \rightarrow B= 3.8 T : ϵ =90% \rightarrow B= 0T : ϵ =80% (EB) – 70% (EE) (less efficient ele-veto)

Is there a X(750) signal?

Mass Spectra @ 3.8 T

• Fit M_{vv} in 0.5-4.5 TeV in 4 categories: (EBEB, EBEE)x(3.8T, 0T)

Mass Spectra @ 0 T

CMS-EXO-16-018

Upper Limits & P-values

- Show results combining 3.8T and 0T datasets
- Spin-0 / Spin-2 results interpretation, for 3 width hypotheses

Livia Soffi

Is there a X(750) signal?

Significance of largest excess

- Largest excess observed for m_x = 760 GeV and narrow width hypotheses
- Local significance: 2.8-2.9 σ depending on the spin hypothesis. \rightarrow Trial factors from sampling distribution of min(p₀), considering all the 6 signal hypotheses (spin and width).
- "Global" significance < 1σ

CMS-EXO-16-018

Combined Analysis of 8 and 13 TeV Data

- CMS presented two searches for diphoton resonances at 8 TeV.
 - HIG-14-006: (*PLB 750 (2015) 494*) search range 150-850 GeV
 - EXO-12-045: search range 500-3000 GeV

- Combination in all 6 signal hypotheses tested at 13TeV.
- At each mass, use analysis with best expected sensitivity: HIG-14-006 in 500-850 GeV, EXO-12-045 otherwise

Results Normalized to 13 TeX x-sec

Compared to single analyses, sensitivity improved by 20-40%

• Largest excess observed at $m_x = 750 \text{ GeV}$ and for narrow width.

\rightarrow Local significance: 3.4 σ

→ Taking into account mass range 500-3500 GeV and all signal hypotheses, **"global" significance** becomes **1.60**

CMS-EXO-16-018

6

Consistency between 8 and 13 TeV

- Evaluated through likelihood scan vs equivalent σ_{13TeV} at $m_x = 750$ GeV under both spin (narrow-width) hypotheses.
- Cross section ratios at 750GeV: \rightarrow For spin 0 (gg \rightarrow S): $\sigma_{13TeV}/\sigma_{8TeV} = 4.7$ \rightarrow For spin 2 (RS): $\sigma_{13TeV}/\sigma_{8TeV} = 4.2$

\rightarrow Compatible results observed in both datasets.

Livia Soffi

Is there a X(750) signal?

Z+γ Resonances

- Search for new resonances decaying to Z+γ could shed more light on the 750 GeV excess
- Look for $A \rightarrow Z + \gamma$, with either $Z \rightarrow ee$ or $Z \rightarrow \mu \mu$

Signature: clean final-state topology giving rise to a clear peak in the invariant mass distribution

 Similar signature as in diphoton analysis → Search strategy measures the non-resonant background directly on data, and looks for localized excesses

- Dedicated event selection:
- $\rm M_{\rm z}$ in 50-130 GeV
- P_{11,2} > 25,20 GeV
- P_{TY} > 4/15 M_{ZY}
 M_{ZY} > 200 GeV

СМЅ-ЕХО-16-019

8

Is there a X(750) signal?

Z+γ Analyses Results

СМЅ-ЕХО-16-014

CMS-EXO-16-019

Is there a X(750) signal?

Outlook and Prospects

- Huge increase of LHC energy opens new territory to explore in the hunt for new physics
- **Diphoton resonances search offer a powerful** way to probe BSM physics
- Low-significance excesses seen in diphoton channel around a mass of 750 GeV and narrow natural width

 → Local (global) significance of the excess (8+13 TeV):
 3.4 (1.6) σ
- Getting ready for more data and investigate new aspects of the resonance:
 - \rightarrow width and spin measurements
 - \rightarrow associated production: $\gamma\gamma+X$
 - \rightarrow correlated final states (WW, tt, VV, Zy, YY->yyyy)

Back to a couple of months ago...

LHC Seminar 03/29/16: https://indico.cern.ch/event/473192/

Is there a X(750) signal?

Back to a couple of months ago...

LHC Seminar 03/29/16: https://indico.cern.ch/event/473192/

Do you believe Is there a X(750) signal?

Is there a X(750) signal?

Back to a couple of months ago...

CMS CMS CMS CMS

LHC Seminar 03/29/16: https://indico.cern.ch/event/473192/

BACKUP

CMS detector for Run2

Livia Soffi

Search for BSM physics in final states with leptons and photons at CMS

CMS Performance in RUN 2

- CMS magnet operated intermittently during 2015 due to persistent problems in the cryogenic system
- Data collected w/o magnetic field are available to be used in physics analyses

Available datasets

	Magnet Field	Integrated Lumi
#1	3.8 T	Up to 2.8 fb ⁻¹
#2	0 T	0.6 fb ⁻¹

Livia Soffi

Search for BSM physics in final states with leptons and photons at CMS

ECAL Energy Resolution

 $\frac{\sigma_E}{E} = \frac{2.8\%}{\sqrt{E(\text{GeV})}} \oplus \frac{12\%}{E(\text{GeV})} \oplus 0.3\%$

The **stochastic** term includes contributions from the **shower containment**, the number of photoelectrons and the fluctuations in the gain process.

The **constant** te The **noise** term of the energy resolu 12% at 1 GeV electron and pho corresponds to a single- channel depends on nonlongitudinal lig noise of about 40 leakage from the MeV, giving 120 **MeV** in a matrix of orimeter, single-o uniformity and st 3×3 crystals.

The beam test setup was without magnetic field, no inert mate

High- p_{T} Photons IDs

CMS CMS CMS CMS

- Set of identification criteria unchanged wrt EXO-15-004
 - Per-diphoton efficiency of 80-90%

photon category	Iso _{Ch} cut (GeV)	$Iso_{\gamma} cut (GeV)$	H/E cut	$\sigma_{i\eta i\eta}$ cut			
$\eta_{SC} < 1.4442$ non-sat.	5	2.75	5×10^{-2}	0.0105			
$\eta_{SC} < 1.4442$ sat.	5	2.75	5×10^{-2}	0.0112			
$\eta_{SC} > 1.566$ non-sat.	5	2.0	5×10^{-2}	0.028			
$\eta_{SC} > 1.566$ sat.	5	2.0	5×10^{-2}	0.030			
conversion-safe electron veto applied for all categories							

3.8 T

Photon identification criteria used in the analysis.

	EB	EE
Iso_{γ} (GeV)	< 3.6	< 3
N _{Trk}	< 4	< 4
$\sigma_{i\eta i\eta}$	< 0.0106	< 0.028
$\sigma_{i\phi i\phi}$	< 0.0106	< 0.028
N _{missing hits}	> 1	>1

0 T

ISO_Y = ΣE_{T} of photons inside a cone ($\Delta R < 0.3$)

 N_{trk} = number of tracks inside a cone ($\Delta R < 0.3$)

 σ_{inin} = shower transverse width along $\eta \sigma$

$\sigma_{i\Phi i\Phi}$ = shower transverse width along Φ

N_{missing hits} (electron veto): photon candidate selected either if no gsfTrack

associated ($N_{missing hits} = -1$) or if the associated gsfTrack has $N_{missing hits} > 1$

Energy Scale Corrections

 Simultaneously adjust energy scale (data) and resolution (MC) using Z peak events

- Stability vs E, checked with boosted events up to ~150GeV.
- Deviations within **0.5(0.7)%** in barrel (endcaps).

Search for BSM physics in final states with leptons and photons at CMS

High-Mass Diphoton Searches in CMS

Ref	Title	M _x range [GeV]	interpreted as			
			spin-0	spin-2	Narrow width	Large width
PLB 750 (2015) 494	Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at √s = 8 TeV	150-850	~	~	~	~
EXO-12-045	Search for High-Mass Diphoton Resonances in pp Collisions at √s = 8 TeV with the CMS Detector	500-3000	×	~	 	~
EXO-15-004	Search for new physics in high mass diphoton events in proton-proton collisions at √s = 13 TeV	500-4500	×	~	~	~
EXO-16-018	Search for new physics in high mass diphoton events in 3.3 fb ⁻¹ of proton-proton collisions at \sqrt{s} =13 TeV and combined interpretation of searches at \sqrt{s} =8 TeV and 13 TeV.	500-4500	~	~	✓	~

Livia Soffi

Search for BSM physics in final states with leptons and photons at CMS

DiPhoton Search Additional Infos

- 3.8 T: Background composition extracted from a template fit \rightarrow Purity for $\gamma\gamma$ events: 80-90 % (EBEB) and 70-80 % (EBEE) (~ unchanged wrt EXO-14-004)
- 0 T: Template approach cannot be used (relies on charged isolation)
 - \rightarrow Lower predicted purity for B=0T: 70-80 % (EBEB) 50-60% (EBEE)
- Event migration studied for events with M > 500 GeV For EBEB: ~10% events go out, ~10% go in For EBEE: ~10% events go out, ~20% go in

Background shape mismodeling

- Goodness of fit of background model assessed locally (as a function of myy) using MC
 - Study pull of predicted number of background events in several mass windows

- Model acceptable if b = | median(p) | < 0.5 for all windows
- If not, increase error by "bias term"
- Bias term included in hypothesis test adding a signal-like component to the background model

$$bkg(m_{\gamma\gamma}|\theta_{bias}) = N_{bkg} \cdot \left(\frac{N_{bkg} - \theta_{bias}}{N_{bkg}} bkg(m_{\gamma\gamma}) + \frac{\theta_{bias}}{N_{bkg}} sig(m_{\gamma\gamma})\right) \cdot Gaus(\theta_{bias}|0, N_{bias})$$
³³

Exclusion Limits: (3.8 T + 0 T+ 8 TeV)

Narrow width

Wide width

Spin 2 combination and LEE

CMS Preliminary 3.3 fb⁻¹ (13 TeV) + 19.7 fb⁻¹ (8 TeV) 95% C.L. limit σ(pp→ G→γγ) (fb) $\frac{\Gamma}{m} = 1.4 \times 10^{-4} \text{ J}=2$ 12 Expected limit 10 ±1σ ±2σ Observed limit 2×10³ ³ 3×10³ m_G (GeV) 5×10² 10^{3} CMS Preliminary 3.3 fb⁻¹ (13 TeV) + 19.7 fb⁻¹ (8 TeV) പ് 1σ 10⁻¹ 2 σ 10-2 $\frac{\Gamma}{m} = 1.4 \times 10^{-4} \text{ J}=2$ 3 σ 10⁻³ Combined 8TeV ---- 13TeV 10 5×10² 6×10² 7×10² 8×10² m_G (GeV)

Including "look elsewhere effect" for all spin & widths hyphotheses:

- Pseudo-experiments to compute bkgonly p-values for full search region for each alternative hypothesis
- min(p0) for each pseudo-experiment considering all hypothesis (Γ, J, Mass)
- Compare global significance distribution with observed value
- Global significance from observed excess is smaller than 1 σ for 13 TeV analysis and 1.6 for 8+13 TeV combined analysis

Z+γ Resonances

36

- Search for new resonances decaying to Z+γ needed to disentangle new physics in the high-mass range
- Look for $A \rightarrow Z + \gamma$, with either $Z \rightarrow ee$ or $Z \rightarrow \mu \mu$

Signature: clean final-state topology giving rise to a clear peak in the invariant mass distribution

	√s (TeV)	Lumi (fb ⁻¹)	Background model	Mass Search Range (GeV)	Natural width	Signal model	UL 95% (fb)
HIG-16-0014	8	19.7	Fit m _{IIy} data w/ three exponential functions	200-1600	1%	From simulation	0.15-3.8
EXO-16-019	13	2.7	Fit m _{IIy} data w/ f=m ^{a+b log m}	350-2000	1.4 x 10⁴%, 5.6 %	Parametrized Model from simulation	50-300

Livia Soffi

Search for BSM physics in final states with leptons and photons at CMS