

...a step forward exploring the inverted hierarchy region of the neutrino mass

Maria Martinez (U. La Sapienza, Rome) on behalf of the CUPID-0 collaboration

28th Rencontres de Blois, May 29 - June 03 (2016)

Outline

- Bolometers for neutrinoless double beta decay $(0\nu\beta\beta)$: CUORE
- CUPID: Cuore Upgrade with Particle IDentification
- Scintillating bolometers for $0\nu\beta\beta$: LUCIFER & CUPID
- CUPID-0: The first demonstrator
- Conclusions

Experimental search for $0\nu\beta\beta$

EXPERIMENTAL SIGNATURE

Approach: SOURCE = DETECTOR

Main signature: Peak at Q-value over 2vββ tail enlarged only by detector resolution

EXPERIMENTAL SENSITIVITY

Lifetime corresponding to the minimum detectable number of events over background at a given C.L.:

$$S^{0\nu} \propto \epsilon \ i. a. \sqrt{\frac{MT}{b\Delta E}} \quad b \neq 0$$
$$S^{0\nu} \propto \epsilon \ i. a. MT \qquad b = 0$$

- M: Total active mass in kg
- ϵ : Detector efficiency
- *i. a*.: Isotopic abundance
- **b**: Background in c/keV/kg/y
- ΔE : Detector resolution @ ROI in keV
- T: Exposure time in y

Bolometers as particle detectors

Crystal absorber (C)

CUORE TeO₂ bolometers:

$T \sim 10 \text{ mK}$		
M ~ 0.75 kg		
$C \sim 2 \times 10^{-9} \text{ J/K}$		
$\Delta T/\Delta E \sim 100 \ \mu K/MeV$		
$\Delta V/\Delta E \sim 300 \mu V/MeV$		
<i>G</i> ~ 2 × 10 ⁻⁹ W/K		
$t = C/G \sim 1 s$		

• The energy release originates a temperature rise:

$$\Delta T = \frac{E}{C(T)}$$

• The temperature sensor converts the temperature rise in an electric signal:

Excellent energy resolution!
 CUORE ~ 5 keV FWHM

Evolution of TeO₂ bolometric experiments

$0\nu\beta\beta$ sensitivity

$$\mathsf{Rate}_{0\nu} \propto \frac{1}{\mathsf{T}_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \left| \left\langle m_{\beta\beta} \right\rangle \right|^2$$

nuclear matrix element estimates

$0\nu\beta\beta$ sensitivity: where we are

F

$$Rate_{0\nu} \propto \frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2$$

nuclear matrix element estimates

CUORE projection

$$\operatorname{Rate}_{0\nu} \propto \frac{1}{\operatorname{T}_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2$$

nuclear matrix element estimates

CUPID GOAL: 10 meV ($m_{\beta\beta}$)

$$\operatorname{Rate}_{0\nu} \propto \frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2$$

CUPID CUORE UPGRAGE WITH PARTICLE IDENTIFICATION

M. Martinez - U. La Sapienza (Rome)

CUPID R&D

CUPID R&D

Scintillating bolometers for $0\nu\beta\beta$

Simultaneous measurement of heat and light

Scintillating bolometers for $0\nu\beta\beta$: LUCIFER & CUPID

LUCIFER

Low-background Underground Cryogenics Installation For Elusive Rates

- ERC Advanced Grant
- From March 2010 March 2016

Characterization of scintillating crystals interesting for $0\nu\beta\beta$

• Zn⁸²Se

erc

- Zn¹⁰⁰MoO4
- ¹¹⁶CdWO4

ZnSe detectors for $0\nu\beta\beta$ of ^{82}Se

- Excellent particle discrimination light/heat (α light yield > $\beta/\gamma \rightarrow$ inverted behaviour respect to the usual one not well understood)
- Excellent discrimination based on the shape of the light pulse!

CUPID-0

- 30 Zn⁸²Se bolometers ~440 g each @ 95% enrichment
- Bolometers arranged in 5 towers. Central bolometers faced to two Ge light detectors
- Total mass: 13.2 kg (7 kg ⁸²Se)
- Expected bkg @ ROI 10⁻³ c/keV/kg/y
- Expected FWHM @ ROI: 10 keV
- START DATA TAKING WITHIN 2016

In construction at LNGS @ CUORE-0 cryostat (crystals & light detectors already delivered to LNGS)

High purity enriched Zn⁸²Se

- Se powder 96.3% enriched at URENCO Stable Isotope Group (Netherlands)
- Zn⁸²Se synthesis and growth at ISMA (Ukraine).
 Final enrichment: 95.4%
- Crystals already delivered to LNGS
- Cutting and polishing @ LNGS
- Final dimensions: ϕ = 4.3 cm h = 5.5 cm weight \approx 440 g

Enriched powder activity (HP-Ge)				
lsotope	Upper limit 90% CL (µ Bq/kg)			
²³² Th	<61			
²³⁸ U	<110			
²³⁵ U	<74			

First test run with CUPID-0 crystals

- 3 Zn₈₂Se crystals in a single tower (total mass 1.32 kg) + 4 Ge light detectors with antireflective SiO coating
- α source ¹⁴⁷Sm (Q_{value} = 2.3 MeV) to determine α rejection power
- R&D cryostat @ LNGS Hall C reached a T ~ 20 mK (Not optimized conditions!) Ge light detector
 Zn₈₂Se

Crystal	Extrapolated FWHM @ Q_{value} (from γ calibration)
ZnSe-1	$30.1\pm1.7~{ m keV}$
ZnSe-2	29.7 ± 1.4 keV
ZnSe-3	$30.2\pm1.7~\mathrm{keV}$

 \times 3 larger values that those expected for CUPID-0 (not optimal T) but enough for the experimental goals

arXiv:1605.05934

VM2002 (reflectant foil)

First test run with CUPID-0 crystals: α discrimination power

β/γ light pulses slower than α

Discrimination power:

$$DP(E) = \frac{|\mu_{\alpha}(E) - \mu_{\beta\gamma}(E)|}{\sqrt{\sigma_{\alpha}^{2}(E) + \sigma_{\beta\gamma}^{2}(E)}}$$

Crystal	$DP(Q_{\beta\beta})$
ZnSe-1	12
ZnSe-2	11
ZnSe-3	10

EXCELLENT DISCRIMINATION POWER!

arXiv:1605.05934

First test run with CUPID-0 crystals

Internal contamination

Except from ²¹⁰Pb, contaminations in bulk or deep in surface (>0.1 μ m)

• Background:

	$Zn^{82}Se-1$	$Zn^{82}Se-2$	$Zn^{82}Se-3$	Array
	$[\mu Bq/kg]$	$[\mu Bq/kg]$	$[\mu Bq/kg]$	$[\mu Bq/kg]$
$^{232}\mathrm{Th}$	13 ± 4	13 ± 4	$<\!\!5$	7 ± 2
$^{228}\mathrm{Th}$	32 ± 7	30 ± 6	22 ± 4	26 ± 2
224 Ra	29 ± 6	26 ± 5	23 ± 5	27 ± 3
²¹² Bi	31 ± 6	31 ± 6	23 ± 5	29 ± 3
$^{238}\mathrm{U}$	17 ± 4	20 ± 5	<10	10 ± 2
$^{234}\mathrm{U}{+}^{226}\mathrm{Ra}$	42 ± 7	30 ± 6	23 ± 5	33 ± 4
$^{230}\mathrm{Th}$	18 ± 5	19 ± 5	17 ± 4	18 ± 3
²¹⁸ Po	20 ± 5	24 ± 5	21 ± 5	21 ± 2
$^{210}\mathrm{Pb}$	100 ± 11	250 ± 17	100 ± 12	150 ± 8

 ^{210}Pb is the larger value, but not dangerous for $\beta\beta$

530 h \rightarrow no events in ROI after discrimination Even better results are expected for CUPID-0

- better anti-Rn shield
- Surface treatment
- cosmogenic isotopes depleted (mainly ⁵⁶Co, Q_{value}=4566 keV, T_{1/2}= 79 d)
- Better energy resolution (lower T)

CUPID-0 prospects

arXiv:1605.05934

From MC simulation of internal contaminants:

- contamination in bulk
- DP = 12
- FWHM = 30keV

Background at ⁸² Se ${ m Q}_{etaeta}$ (counts/keV/kg/y)			
after α discrimination	4×10^{-3}		
coincidences rejection	2.3×10^{-3}		
²⁰⁸ TI – ²¹² Bi time delay rejection	1×10^{-3}		
+ cryostat γ contamination	$< 1.5 \times 10^{-3}$		

 $T_{1/2} = 9.3 \times 10^{24}$ yr (90% CL) (1 yr data-taking, 0 bkg approx.)

Conclusions

- Completely exploring the inverted hierarchy region of neutrino masses will require a detector with ~1 ton isotopic mass and background level at the order of 0.1 counts/ton/yr.
- CUPID (Cuore Upgrade with Particle Identificiation) is pursuing this goal through several strategies, one of them being using scintillating bolometers.
- LUCIFER ZnSe crystals and Ge-light detectors fulfill the project requirements both in terms of α background rejection and energy resolution.
- CUPID-0, the first CUPID demonstrator with Zn⁸²Se will start data-taking LNGS within 2016. A second phase with Li₂¹⁰⁰MoO₄ and/or TeO₂/Cherenkov will follow.

Thanks for your attention!