Seesaw mechanism in ν oscillations

Enrique Fernández Martínez

Neutrino physics missing pieces

Neutrino physics missing pieces

Neutrino masses beyond the SM

All SM fermions acquire Dirac masses via Yukawa couplings

Neutrino masses beyond the SM

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_f \overline{f_L} \phi f_R \xrightarrow{\text{SSB}} \frac{Y_f \text{ v}}{\sqrt{2}} \overline{f_L} f_R \qquad m_D = \frac{Y_f \text{ v}}{\sqrt{2}}
$$

Neutrino masses beyond the SM

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_f \overline{f_L} \phi f_R \xrightarrow[\langle \phi \rangle = \frac{V}{\sqrt{2}}]{} \frac{Y_f v}{\sqrt{2}} \overline{f_L} f_R \qquad m_D = \frac{Y_f v}{\sqrt{2}}
$$

Simplest option add N_R : a Majorana mass is also allowed

R $M_{_N} \overline{N}_{_R}^{\: C} N$

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_f \overline{f_L} \phi f_R \xrightarrow[\langle \phi \rangle = \frac{V}{\sqrt{2}}]{} \frac{Y_f v}{\sqrt{2}} \overline{f_L} f_R \qquad m_D = \frac{Y_f v}{\sqrt{2}}
$$

Simplest option add N_R : a Majorana mass is also allowed

$$
\boldsymbol{M}_{_{N}}\overline{\boldsymbol{N}}_{\boldsymbol{R}}^{C}\boldsymbol{N}_{\boldsymbol{R}}
$$

This is an entirely new term which implies:

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_f \overline{f_L} \phi f_R \xrightarrow{\text{SSB}} \frac{Y_f \text{ v}}{\sqrt{2}} \overline{f_L} f_R \qquad m_D = \frac{Y_f \text{ v}}{\sqrt{2}}
$$

Simplest option add N_R : a Majorana mass is also allowed

$$
\boldsymbol{M}_{_{N}}\overline{N}_{\!R}^{\boldsymbol{C}}\boldsymbol{N}_{\!R}
$$

This is an entirely new term which implies:

Fermion number violation \rightarrow Baryogenesis via Leptogenesis

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_f \overline{f_L} \phi f_R \xrightarrow{\text{SSB}} \frac{Y_f \text{ v}}{\sqrt{2}} \overline{f_L} f_R \qquad m_D = \frac{Y_f \text{ v}}{\sqrt{2}}
$$

Simplest option add N_R : a Majorana mass is also allowed

$$
\boldsymbol{M}_{_{N}}\overline{N}_{\boldsymbol{R}}^{C}\boldsymbol{N}_{\boldsymbol{R}}
$$

This is an entirely new term which implies:

Fermion number violation \rightarrow Baryogenesis via Leptogenesis

A mass scale not related to the EW scale and the Higgs

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_f \overline{f_L} \phi f_R \xrightarrow{\text{SSB}} \frac{Y_f \text{ v}}{\sqrt{2}} \overline{f_L} f_R \qquad m_D = \frac{Y_f \text{ v}}{\sqrt{2}}
$$

Simplest option add N_R : a Majorana mass is also allowed

$$
\boldsymbol{M}_{_{N}}\overline{\boldsymbol{N}}_{\boldsymbol{R}}^{C}\boldsymbol{N}_{\boldsymbol{R}}
$$

This is an entirely new term which implies:

Fermion number violation \rightarrow Baryogenesis via Leptogenesis

A mass scale not related to the EW scale and the Higgs To be sought for at experiments!!

All SM fermions acquire Dirac masses via Yukawa couplings

$$
Y_f \overline{f_L} \phi f_R \xrightarrow{\text{SSB}} \frac{Y_f \text{ v}}{\sqrt{2}} \overline{f_L} f_R \qquad m_D = \frac{Y_f \text{ v}}{\sqrt{2}}
$$

Simplest option add N_R : a Majorana mass is also allowed

R $M_{_N} \overline{N}_{_R}^{\: C} N$

$$
m_{v} = \begin{pmatrix} 0 & m_{D} \\ m_{D}^{t} & M_{N} \end{pmatrix} \xrightarrow{\qquad} U^{T} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{t} & M_{N} \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}
$$

Seesaw

If $M_N >> m_D$ then $M \approx M_N$ and $m \approx m_D^T M_N^{-1} m_D \rightarrow$ smallness of V masses

If $M_N >> m_D$ then $M \approx M_N$ and $m \approx m_D^T M_N^{-1} m_D \rightarrow$ smallness of V masses

But a very high $\boldsymbol{M}_{_{N}}$ worsens the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

But a very high $\boldsymbol{M}_{_{N}}$ worsens the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

 M_{N}^{\parallel} could be anywhere...

But a very high $\boldsymbol{M}_{_{N}}$ worsens the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

 M_{N}^{\parallel} could be anywhere...

Very different phenomenology at different scales

See talk by Asmaa Abada

Cosmology and lab constraints

A. C Vincent, EFM, P. Hernandez, M. Lattanzi and O. Mena arXiv:1408.1956

Precision

electroweak

and flavour

violation

I will concentrate in the very high $(M_N > 100 \text{ GeV})$ and very low $(M_N < 1 \text{ keV})$ limits of potential interest for v oscillations

W $\overline{}$ l_α^-

$$
V_{\alpha}^{-}
$$

$$
\langle V_{\alpha}^{W} \rangle = \sum_{i} U_{\alpha i}^{*} |V_{i}\rangle
$$

 l W a *U*a*ⁱ* * ⁿ ^a ⁿ *i i i*(*E t p L*) (*L*,*t*) ⁿ *ⁱ e i i* ⁿ *i*

$$
\sqrt{\frac{l_{\alpha}}{l_{\alpha}}} \sqrt{\frac{W}{l_{\alpha}}} \sqrt{\frac{V_{\alpha}}{l_{\alpha}}} |\nu_{i}\rangle
$$
\n
$$
\nu_{i}(L, t) = e^{-i(E_{i}t - p_{i}L)} |\nu_{i}\rangle
$$
\n
$$
\nu_{\beta} \sqrt{\frac{W}{l_{\beta}}} \sqrt{\frac{V_{\beta}}{l_{\beta}}} |\nu_{\alpha}(L)\rangle \approx \sum_{i} U_{\beta i} e^{-\frac{-im_{i}^{2}L}{2E}} U_{\alpha i}^{*} \neq 0
$$

$$
V_{\alpha} \bigvee V_{\alpha} = \sum_{i} U_{\alpha i}^{*} |v_{i}\rangle \qquad P_{\alpha \beta} = \sum_{i,j} U_{\beta i} U_{\alpha i}^{*} U_{\alpha j} U_{\beta j}^{*} e^{\frac{-i \Delta m_{ij}^{2} L}{2E}}
$$

$$
|v_{i}(L, t)\rangle = e^{-i(E_{i}t - p_{i}L)} |v_{i}\rangle
$$

$$
v_{\beta} \bigvee V_{\beta} \bigvee \bigvee V_{\beta} |v_{\alpha}(L)\big| \approx \sum_{i} U_{\beta i} e^{\frac{-im_{i}^{2} L}{2E}} U_{\alpha i}^{*} \neq 0
$$

$$
U^T \begin{pmatrix} 0 & m_D \\ m_D^t & M_N \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}
$$

The 3×3 submatrix *N* of active neutrinos will not be unitary

Effects in weak interactions… †

$$
\Gamma = \Gamma_{SM} \sum_{i} \left| N_{\alpha i} \right|^2 = \Gamma_{SM} \left(N N^{\dagger} \right)_{\alpha \alpha}
$$

$$
U^T \begin{pmatrix} 0 & m_D \\ m_D^t & M_N \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}
$$

The 3×3 submatrix *N* of active neutrinos will not be unitary

Effects in weak interactions...

$$
\Gamma = \Gamma_{SM} \sum_{i} \left| N_{\alpha i} \right|^2 = \Gamma_{SM} \left(N N^{\dagger} \right)_{\alpha \alpha}
$$

… and oscillation probabilities…

$$
|v_{\alpha}\rangle \approx \sum_{i} N_{\alpha i}^* |v_{i}\rangle
$$

$$
U^T \begin{pmatrix} 0 & m_D \\ m_D^t & M_N \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}
$$

The 3×3 submatrix *N* of active neutrinos will not be unitary

Effects in weak interactions…

$$
\Gamma = \Gamma_{SM} \sum_{i} \left| N_{\alpha i} \right|^2 = \Gamma_{SM} \left(N N^{\dagger} \right)_{\alpha \alpha}
$$

… and oscillation probabilities…

$$
|v_{\alpha}\rangle \approx \sum_{i} N_{\alpha i}^* |v_{i}\rangle
$$

$$
P(v_{\alpha} \to v_{\beta};0) \propto \left| \sum_{i} N_{\alpha i}^{*} N_{\beta i} \right|^{2} \neq \delta_{\alpha \beta}
$$

In general $N = (1 - \eta) \cdot U$ with η Hermitian and *U* Unitary For a Seesaw $\eta = \frac{1}{\eta} \sum_{n=1}^{\infty}$ with $\Theta \approx m_{\rm D}^{\dagger} M_{N}^{-1}$ the heavy-active mixing 2 $\Theta\Theta^\dagger$ $m = \frac{900}{2}$ with $\Theta \approx m_D^{\dagger} M_N^{-1}$ D $\Theta \thickapprox m_{\rm D}^{\dagger} M_{\,N}^{\,-}$

In general $N = (1 - \eta) \cdot U$ with η Hermitian and *U* Unitary $\Theta\Theta^\dagger$ $\Theta \thickapprox m_{\rm D}^{\dagger} M_{\,N}^{\,-}$ $m = \frac{900}{2}$ with $\Theta \approx m_D^{\dagger} M_N^{-1}$ For a Seesaw $\eta = \frac{1}{\eta} \sum_{n=1}^{\infty}$ with $\Theta \approx m_{\rm D}^{\dagger} M_{N}^{-1}$ the heavy-active mixing D 2 The new phases in η imply new sources 1.5 of CP violation that could be confused $P_{\mu e}^{3x3}$ (δ_{CP} = 3π/2) ϕ/π with the standard if \Box +10% similar in magnitude \blacksquare +20% 0.5 For $\eta_{e\mu} = 0.01 e^{i\phi}$ 0.5 1.5 Miranda, M. Tortola and J. Valle arXiv:1604.05690

In general $N = (1 - \eta) \cdot U$ with η Hermitian and *U* Unitary For a Seesaw $\eta = \frac{1}{\eta} \sum_{n=1}^{\infty}$ with $\Theta \approx m_{\rm D}^{\dagger} M_{N}^{-1}$ the heavy-active mixing 2 $\Theta\Theta^\dagger$ $m = \frac{900}{2}$ with $\Theta \approx m_D^{\dagger} M_N^{-1}$ D $\Theta \thickapprox m_{\rm D}^{\dagger} M_{\,N}^{\,-}$

 G_F from μ decay is affected!

 G_F from μ decay is affected! *W* n*j e Nej* n*i* $\overline{}$ μ $N_{\mu i}^{*}$ $\mathbf{G}_{_{\mathit{H}}}=\boldsymbol{G}_{_{\mathit{F}}}\left(\boldsymbol{N}\boldsymbol{N}^{\dagger}\right)_{\!\!\mathit{ee}}\!\left(\boldsymbol{N}\boldsymbol{N}^{\dagger}\right)_{\!\!\mathit{u}\mu}$ In general $N = (1 - \eta) \cdot U$ with η Hermitian and *U* Unitary For a Seesaw $\eta = \frac{1}{\eta} \sum_{n=1}^{\infty}$ with $\Theta \approx m_{\rm D}^{\dagger} M_{N}^{-1}$ the heavy-active mixing 2 $\Theta\Theta^\dagger$ $m = \frac{900}{2}$ with $\Theta \approx m_D^{\dagger} M_N^{-1}$ D $\Theta \thickapprox m_{\rm D}^{\dagger} M_{\,N}^{\,-}$ $\mathbf{G}_{_{\mu}}=\boldsymbol{G}_{_{F}}\big(1-\eta_{_{ee}}-\eta_{_{\mu\mu}}\big)$ But Agree at the \sim per mille level $\frac{2}{2} (M_Z^2 - M_W^2)$ 2 $2 M_{_W}^{\,2} \Big(M_{_Z}^{\,2} - M_{_W}^{\,2}$ *Z* $F = \sqrt{2} M_W^2 \left(M_Z^2 - M \right)$ *M G* $\overline{}$ $=\frac{\alpha \pi}{\sqrt{2}}$

 G_F from μ decay is affected! *W* n*j* $\frac{J}{\sqrt{2}}$ *e Nej* n*i* $\overline{}$ μ * $N_{\mu i}^{*}$ $\mathbf{G}_{_{\mathit{H}}}=\boldsymbol{G}_{_{\mathit{F}}}\left(\boldsymbol{N}\boldsymbol{N}^{\dagger}\right)_{\!\!\mathit{ee}}\!\left(\boldsymbol{N}\boldsymbol{N}^{\dagger}\right)_{\!\!\mathit{u}\mu}$ In general $N = (1 - \eta) \cdot U$ with η Hermitian and *U* Unitary For a Seesaw $\eta = \frac{1}{\eta} \sum_{n=1}^{\infty}$ with $\Theta \approx m_{\rm D}^{\dagger} M_{N}^{-1}$ the heavy-active mixing 2 $\Theta\Theta^\dagger$ $m = \frac{900}{2}$ with $\Theta \approx m_D^{\dagger} M_N^{-1}$ D $\Theta \thickapprox m_{\rm D}^{\dagger} M_{\,N}^{\,-}$ $\mathbf{G}_{_{\mu}}=\boldsymbol{G}_{_{F}}\big(1-\eta_{_{ee}}-\eta_{_{\mu\mu}}\big)$ But Agree at the \sim per mille level $\frac{2}{w} (M_Z^2 - M_W^2)$ 2 $2 M_{_W}^{\,2} \Big(M_{_Z}^{\,2} - M_{_W}^{\,2}$ *Z* $F = \sqrt{2} M_W^2 \left(M_Z^2 - M \right)$ *M G* $\overline{}$ $=\frac{\alpha \pi}{\sqrt{2}}$ Measurements of s_w^2 or tests of CKM unitarity from β and *K* decay also constrain G_F

 G_F from μ decay is affected! *W* n*j* $\frac{J}{\sqrt{2}}$ *e Nej* n*i* $\overline{}$ μ * $N_{\mu i}^{*}$ $\mathbf{G}_{_{\mathit{H}}}=\boldsymbol{G}_{_{\mathit{F}}}\left(\boldsymbol{N}\boldsymbol{N}^{\dagger}\right)_{\!\!\mathit{ee}}\!\left(\boldsymbol{N}\boldsymbol{N}^{\dagger}\right)_{\!\!\mathit{u}\mu}$ In general $N = (1 - \eta) \cdot U$ with η Hermitian and *U* Unitary For a Seesaw $\eta = \frac{1}{\eta} \sum_{n=1}^{\infty}$ with $\Theta \approx m_{\rm D}^{\dagger} M_{N}^{-1}$ the heavy-active mixing 2 $\Theta\Theta^\dagger$ $m = \frac{900}{2}$ with $\Theta \approx m_D^{\dagger} M_N^{-1}$ D $\Theta \thickapprox m_{\rm D}^{\dagger} M_{\,N}^{\,-}$ $\mathbf{G}_{_{\mu}}=\boldsymbol{G}_{_{F}}\big(1-\eta_{_{ee}}-\eta_{_{\mu\mu}}\big)$ But Agree at the \sim per mille level $\frac{2}{w} (M_Z^2 - M_W^2)$ 2 $2 M_{_W}^{\,2} \Big(M_{_Z}^{\,2} - M_{_W}^{\,2}$ *Z* $F = \sqrt{2} M_W^2 \left(M_Z^2 - M \right)$ *M G* $\overline{}$ $=\frac{\alpha \pi}{\sqrt{2}}$ Measurements of s_w^2 or tests of CKM unitarity from β and *K* decay also constrain G_F Lepton weak universality from π , *K* and τ decay ratios LVF processes from the loss of the GIM cancellation...

Recent bounds from a global fit to flavour and Electroweak precision data (28 observables considered) EFM, J. Hernandez-Garcia

Despite some confusion in present literature non-unitarity from heavy v mixing is beyond the reach of present and near future facilities (given the 10^{-3} -10⁻⁴ bounds)

Despite some confusion in present literature non-unitarity from heavy ν mixing is beyond the reach of present and near future facilities (given the 10^{-3} -10⁻⁴ bounds)

For very light (< keV) extra neutrinos these strong constraints are lost and v oscillations are our best probe of this scale.

S. Parke and M. Ross-Lonergan arXiv:1508.05095

Non-unitarity (from
\nheavy v mixing)
\nconstraints from
\nprecision EW and
\nflavour observables
\n
$$
N = (1 - \eta)U_{PMNS} \quad \eta = \frac{\Theta\Theta^{\dagger}}{2} \quad \Theta = m_D M_N^{-1} \quad \Theta
$$
 95% CL
\n
$$
|\eta_{\alpha\beta}| \le \begin{pmatrix} 2.6 \cdot 10^{-2} & 2.4 \cdot 10^{-2} & 3.6 \cdot 10^{-2} \\ 2.4 \cdot 10^{-2} & 3.6 \cdot 10^{-2} \\ 3.6 \cdot 10^{-2} & 4.8 \cdot 10^{-2} \end{pmatrix} \quad \Theta = m_D M_N^{-1} \quad \Theta
$$
 95% CL
\n
$$
|\eta_{\alpha\beta}| \le \begin{pmatrix} 2.6 \cdot 10^{-2} & 2.4 \cdot 10^{-2} & 3.6 \cdot 10^{-2} \\ 3.6 \cdot 10^{-2} & 4.8 \cdot 10^{-2} & 4.8 \cdot 10^{-2} \\ 3.6 \cdot 10^{-2} & 4.8 \cdot 10^{-2} & 0.10 \end{pmatrix} \begin{pmatrix} 1000 & 1000 & 1000 \\ 0 & 1000 & 1000 \\ 0 & 0 & 000 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

$$
U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}
$$

"Heavy v'' Non-Unitarity

$$
P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}
$$

$$
U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}
$$

"Heavy v" Non-Unitarity $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
"Light v" Steriles $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
 $+ \sum_{i,j} \Theta_{\beta i} \Theta_{\alpha l}^* \Theta_{\alpha l} \Theta_{\beta l}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
 $+ \sum_{i,j} N_{\beta i} N_{\alpha i}^* \Theta_{\alpha J} \Theta_{\beta J}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$

$$
U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}
$$

\n"Heavy v" Non-Unitarity $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
\n"Light v" Steriles $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
\nIf $\frac{\Delta m_{ij}^2 L}{E} >> 1$ oscillations too $+ \sum_{i,j} \Theta_{\beta i} \Theta_{\alpha i}^* \Theta_{\alpha j} \Theta_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
\nfast to resolve and only see average effect $+ \sum_{i,j} N_{\beta i} N_{\alpha i}^* \Theta_{\alpha j} \Theta_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$

$$
U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}
$$

\n"Heavy v" Non-Unitarity $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
\n"Light v" Steriles $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
\nAt leading order "heavy" non-unitarity and averaged-out
\n"light" steriles have the same impact in oscillations

Steriles and CPV at DUNE far detector

D. Dutta et al arXiv:1607.02152

G. H. Collin et al arXiv:1602.00671; S. Gariazzo et al arXiv:1507.08204; J. Kopp et al arXiv:1303.3011

Can also be interpretetd in a (really) low scale Seesaw context

A. de Gouvea hep-ph/0501039; A. Donini et al 1106.0064; M. Blennow and EFM 1107.3992 J. Fan and P. Langacker 1201.6662; A. Donini et al 1205.5230

Conclusions

- **Neutrino masses and mixings point to a new physics** scale where Lepton number is broken
- Different phenomenology depending on the scale
- Only the Neutrino Factory could explore the very high scale scenario (PMNS non-unitarity)
- But present and near-future ν oscillation facilities can probe the very low scale (sterile v) limit
- If sterile v oscillations are "averaged out" the two limits give the same pheno at leading order

