Seesaw mechanism in v oscillations

Enrique Fernández Martínez

Neutrino physics missing pieces

Neutrino physics missing pieces

Neutrino masses beyond the SM

All SM fermions acquire Dirac masses via Yukawa couplings

Neutrino masses beyond the SM

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathsf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{D} = \frac{Y_{f} \mathsf{v}}{\sqrt{2}}$$

Neutrino masses beyond the SM

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathsf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{D} = \frac{Y_{f} \mathsf{v}}{\sqrt{2}}$$

Simplest option add N_R : a Majorana mass is also allowed

 $M_{N}\overline{N}_{R}^{C}N_{R}$

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathsf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{D} = \frac{Y_{f} \mathsf{v}}{\sqrt{2}}$$

Simplest option add N_R : a Majorana mass is also allowed

$$M_{N}\overline{N}_{R}^{C}N_{R}$$

This is an entirely new term which implies:

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathsf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{D} = \frac{Y_{f} \mathsf{v}}{\sqrt{2}}$$

Simplest option add N_R : a Majorana mass is also allowed

$$M_{N}\overline{N}_{R}^{C}N_{R}$$

This is an entirely new term which implies:

Fermion number violation \rightarrow Baryogenesis via Leptogenesis

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathsf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{D} = \frac{Y_{f} \mathsf{v}}{\sqrt{2}}$$

Simplest option add N_R : a Majorana mass is also allowed

$$M_{N}\overline{N}_{R}^{C}N_{R}$$

This is an entirely new term which implies:

Fermion number violation \rightarrow Baryogenesis via Leptogenesis

A mass scale not related to the EW scale and the Higgs

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathsf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{D} = \frac{Y_{f} \mathsf{v}}{\sqrt{2}}$$

Simplest option add N_R : a Majorana mass is also allowed

$$M_{N}\overline{N}_{R}^{C}N_{R}$$

This is an entirely new term which implies:

Fermion number violation \rightarrow Baryogenesis via Leptogenesis

A mass scale not related to the EW scale and the Higgs To be sought for at experiments!!

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathsf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{D} = \frac{Y_{f} \mathsf{v}}{\sqrt{2}}$$

Simplest option add N_R : a Majorana mass is also allowed

 $M_{N}\overline{N}_{R}^{C}N_{R}$

$$m_{\nu} = \begin{pmatrix} 0 & m_{D} \\ m_{D}^{t} & M_{N} \end{pmatrix} \xrightarrow{} U^{T} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{t} & M_{N} \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$

Seesaw

If $M_N >> m_D$ then $M \approx M_N$ and $m \approx m_D^T M_N^{-1} m_D \rightarrow$ smallness of ν masses

If $M_N >> m_D$ then $M \approx M_N$ and $m \approx m_D^T M_N^{-1} m_D \rightarrow$ smallness of ν masses

But a very high M_{N} worsens the Higgs hierarchy problem

Lightness of ν masses could also come naturally from an approximate symmetry (B-L)

But a very high M_{N} worsens the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

eV	keV	MeV	GeV	TeV

 M_{N} could be anywhere...

But a very high M_{N} worsens the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

eV	keV	MeV	GeV	TeV

 M_{N} could be anywhere...

Very different phenomenology at different scales

See talk by Asmaa Abada

eV	keV	MeV	GeV	TeV
				Precision electroweak and flavour violation

	Cosmology Meson decays peak searches				Collider searches		
eV	keV M	eV	Ge\	/		TeV	$\left \right\rangle$
							γ
	Kinks in β decay spectrum See talks by Pilar Hernández			Fixed target searches		Precisi electrow and flav violatio	on veak vour on

Cosmology and lab constraints

A. C Vincent, EFM, P. Hernandez, M. Lattanzi and O. Mena arXiv:1408.1956

Precision

electroweak

and flavour

violation

I will concentrate in the very high ($M_N > 100 \text{ GeV}$) and very low ($M_N < 1 \text{ keV}$) limits of potential interest for v oscillations

 l_{α}^{-} W

$$U^{T} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{t} & M_{N} \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$

The 3×3 submatrix N of active neutrinos will not be unitary

Effects in weak interactions...

$$\Gamma = \Gamma_{SM} \sum_{i} \left| N_{\alpha i} \right|^{2} = \Gamma_{SM} \left(N N^{\dagger} \right)_{\alpha \alpha}$$

$$U^{T} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{t} & M_{N} \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$

The 3×3 submatrix N of active neutrinos will not be unitary

Effects in weak interactions...

$$\Gamma = \Gamma_{SM} \sum_{i} \left| N_{\alpha i} \right|^{2} = \Gamma_{SM} \left(N N^{\dagger} \right)_{\alpha \alpha}$$

... and oscillation probabilities...

$$\left|\nu_{\alpha}\right\rangle \approx \sum_{i} N_{\alpha i}^{*} \left|\nu_{i}\right\rangle$$

$$U^{T} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{t} & M_{N} \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$

The 3×3 submatrix N of active neutrinos will not be unitary

Effects in weak interactions...

$$\Gamma = \Gamma_{SM} \sum_{i} \left| N_{\alpha i} \right|^{2} = \Gamma_{SM} \left(N N^{\dagger} \right)_{\alpha \alpha}$$

... and oscillation probabilities...

$$\left|\nu_{\alpha}\right\rangle \approx \sum_{i} N_{\alpha i}^{*} \left|\nu_{i}\right\rangle$$

$$P(\nu_{\alpha} \to \nu_{\beta}; 0) \propto \left| \sum_{i} N_{\alpha i}^{*} N_{\beta i} \right|^{2} \neq \delta_{\alpha \beta}$$

In general $N = (1 - \eta) \cdot U$ with η Hermitian and U Unitary For a Seesaw $\eta = \frac{\Theta \Theta^{\dagger}}{2}$ with $\Theta \approx m_{\rm D}^{\dagger} M_N^{-1}$ the heavy-active mixing In general $N = (1 - \eta) \cdot U$ with η Hermitian and U Unitary For a Seesaw $\eta = \frac{\Theta \Theta^{\dagger}}{2}$ with $\Theta \approx m_{\rm D}^{\dagger} M_N^{-1}$ the heavy-active mixing The new phases in η imply new sources 1.5 of CP violation that could be confused $P_{\mu e}^{3x3} (\delta_{CP} = 3\pi/2)$ ф/д with the standard if +10% similar in magnitude +20% 0.5 For $\eta_{e\mu} = 0.01 e^{i\phi}$ 0.5 1.5 Miranda, M. Tortola and J. Valle arXiv:1604.05690

In general $N = (1 - \eta) \cdot U$ with η Hermitian and U Unitary For a Seesaw $\eta = \frac{\Theta \Theta^{\dagger}}{2}$ with $\Theta \approx m_{\rm D}^{\dagger} M_N^{-1}$ the heavy-active mixing

 G_F from μ decay is affected!

In general $N = (1 - \eta) \cdot U$ with η Hermitian and U Unitary For a Seesaw $\eta = \frac{\Theta \Theta^{\dagger}}{2}$ with $\Theta \approx m_{\rm D}^{\dagger} M_N^{-1}$ the heavy-active mixing But $G_F = \frac{\alpha \pi M_Z^2}{\sqrt{2} M_W^2 (M_Z^2 - M_Z^2)}$ G_F from μ decay is affected! Agree at the ~per mille level $G_{\mu} = G_F \left(N N^{\dagger} \right)_{ee} \left(N N^{\dagger} \right)_{\mu\mu}$ $G_{\mu} = G_F \left(1 - \eta_{ee} - \eta_{\mu\mu} \right)$

In general $N = (1 - \eta) \cdot U$ with η Hermitian and U Unitary For a Seesaw $\eta = \frac{\Theta \Theta^{\dagger}}{2}$ with $\Theta \approx m_{\rm D}^{\dagger} M_N^{-1}$ the heavy-active mixing But $G_F = \frac{\alpha \pi M_Z^2}{\sqrt{2} M_W^2 (M_Z^2 - M^2)}$ G_F from μ decay is affected! Agree at the ~per mille level Measurements of s_w^2 or tests of CKM unitarity from β and K decay also constrain G_F $G_{\mu} = G_F \left(N N^{\dagger} \right)_{ee} \left(N N^{\dagger} \right)_{\mu\mu}$ $G_{\mu} = G_F \left(1 - \eta_{ee} - \eta_{\mu\mu} \right)$

In general $N = (1 - \eta) \cdot U$ with η Hermitian and U Unitary For a Seesaw $\eta = \frac{\Theta \Theta^{\dagger}}{2}$ with $\Theta \approx m_{\rm D}^{\dagger} M_N^{-1}$ the heavy-active mixing But $G_F = \frac{\alpha \pi M_Z^2}{\sqrt{2} M_W^2 (M_Z^2 - M^2)}$ G_F from μ decay is affected! Agree at the ~per mille level Measurements of s_w^2 or tests of CKM unitarity from β and K decay also constrain G_F Lepton weak universality from $G_{\mu} = G_F \left(N N^{\dagger} \right)_{ee} \left(N N^{\dagger} \right)_{\mu\mu}$ $G_{\mu} = G_F \left(1 - \eta_{ee} - \eta_{\mu\mu} \right)$ π , K and τ decay ratios LVF processes from the loss of the GIM cancellation...

Recent bounds from a global fit to flavour and Electroweak precision data (28 observables considered) EFM, J. Hernandez-Garcia and J. Lopez-Pavon arXiv:1605.08774

Despite some confusion in present literature non-unitarity from heavy v mixing is beyond the reach of present and near future facilities (given the 10^{-3} - 10^{-4} bounds)

Despite some confusion in present literature non-unitarity from heavy v mixing is beyond the reach of present and near future facilities (given the 10^{-3} - 10^{-4} bounds)

For very light (< keV) extra neutrinos these strong constraints are lost and ν oscillations are our best probe of this scale.

S. Parke and M. Ross-Lonergan arXiv:1508.05095

$$\begin{split} & \text{Non-unitarity (from}_{\substack{\text{heavy } \nu \text{ mixing} \\ \text{constraints from} \\ \text{precision EW and} \\ & \text{flavour observables}} & |\eta_{\alpha\beta}| \leq \begin{pmatrix} 1.3 \cdot 10^{-3} & 1.2 \cdot 10^{-5} & 1.4 \cdot 10^{-3} \\ 1.2 \cdot 10^{-5} & 2.0 \cdot 10^{-4} & 6.0 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} & 6.0 \cdot 10^{-4} & 2.8 \cdot 10^{-3} \end{pmatrix} \\ & N = (1-\eta) U_{PMNS} \quad \eta = \frac{\Theta\Theta^{\dagger}}{2} \quad \Theta = m_D M_N^{-1} \quad @ 95\% \text{ CL} \\ & |\eta_{\alpha\beta}| \leq \begin{pmatrix} 2.6 \cdot 10^{-2} & 2.4 \cdot 10^{-2} & 3.6 \cdot 10^{-2} \\ 2.4 \cdot 10^{-2} & 4.5 \cdot 10^{-2} & 4.8 \cdot 10^{-2} \\ 3.6 \cdot 10^{-2} & 4.8 \cdot 10^{-2} & 0.10 \end{pmatrix} \\ & \text{Non-unitarity (from light ν mixing) constraints from oscillation searches} \end{split}$$

$$U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}$$

"Heavy v" Non-Unitarity $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$

$$U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}$$

"Heavy v" Non-Unitarity $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
"Light v" Steriles $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
 $+ \sum_{I,J} \Theta_{\beta I} \Theta_{\alpha I}^* \Theta_{\alpha J} \Theta_{\beta J}^* e^{\frac{-i\Delta m_{iJ}^2 L}{2E}}$
 $+ \sum_{i,J} N_{\beta i} N_{\alpha i}^* \Theta_{\alpha J} \Theta_{\beta J}^* e^{\frac{-i\Delta m_{iJ}^2 L}{2E}}$

$$U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}$$

"Heavy v" Non-Unitarity $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
"Light v" Steriles $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
If $\frac{\Delta m_{ij}^2 L}{E} >> 1$ oscillations too fast to resolve and only see average effect $+ \sum_{i,j} N_{\beta i} N_{\alpha j}^* \Theta_{\beta j} e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$

$$U = \begin{pmatrix} N & \Theta \\ X & Y \end{pmatrix}$$

"Heavy v" Non-Unitarity $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
"Light v" Steriles $P_{\alpha\beta} = \sum_{i,j} N_{\beta i} N_{\alpha i}^* N_{\alpha j} N_{\beta j}^* e^{\frac{-i\Delta m_{ij}^2 L}{2E}}$
 $+ \sum_{I,J} \Theta_{\beta I} \Theta_{\alpha I}^* \Theta_{\alpha J} \Theta_{\beta J}^* e^{\frac{i\Delta m_{ij}^2 L}{2E}}$
At leading order "heavy" non-unitarity and avergaed-out
"light" steriles have the same impact in oscillations

Steriles and CPV at DUNE far detector

D. Dutta et al arXiv:1607.02152

G. H. Collin et al arXiv:1602.00671; S. Gariazzo et al arXiv:1507.08204; J. Kopp et al arXiv:1303.3011

Can also be interpretetd in a (really) low scale Seesaw context

A. de Gouvea hep-ph/0501039; A. Donini et al 1106.0064; M. Blennow and EFM 1107.3992 J. Fan and P. Langacker 1201.6662; A. Donini et al 1205.5230

Conclusions

- Neutrino masses and mixings point to a new physics scale where Lepton number is broken
- Different phenomenology depending on the scale
- Only the Neutrino Factory could explore the very high scale scenario (PMNS non-unitarity)
- But present and near-future v oscillation facilities can probe the very low scale (sterile v) limit
- If sterile v oscillations are "averaged out" the two limits give the same pheno at leading order

