ALICE highlights

Roberto Preghenella
for the ALICE Collaboration
Istituto Nazionale di Fisica Nucleare
CERN

LHC Physics Colloquium
Open Session of the CERN Council
18th December 2015
ALICE Collaboration

37 countries, 151 institutes, 1550 members
Heavy-ion collisions

nuclear matter under extreme conditions
high temperature and energy-density
expected to undergo a phase-transition
hadronic matter
\[\downarrow \]
Quark-Gluon Plasma (QGP)

study the phase diagram and the properties of hot QCD matter
The ALICE detector

a dedicated heavy-ion experiment at the LHC

designed to cope with

very high multiplicities

\(dN_{\text{ch}}/d\eta \leq 8000 \)

3D tracking with TPC

low-\(p_T \) tracking

moderate \(B = 0.5 \) T

thin materials

uses all known **PID** techniques

Roberto Preghenella
A few selected recent results from LHC Run-1 and Run-2
CPT invariance in nuclear systems

precision measurement of nuclei mass with time-of-flight

$$(m/z)^2_{\text{TOF}} = (p/z)^2 \left[(t_{\text{TOF}}/L)^2 - 1/c^2 \right]$$

makes use of heavy-ion collisions as an efficient source of nuclei and anti-nuclei combined with high-precision tracking and identification capabilities of ALICE
CPT invariance in nuclear systems

\[
(m/z)^2_{\text{TOF}} = \left(\frac{p}{z} \right)^2 \left[\left(\frac{t_{\text{TOF}}}{L} \right)^2 - \frac{1}{c^2} \right]
\]

measuring mass differences rather than absolute values
\[\rightarrow \text{reduced uncertainties}\]
momentum, time-of-flight, track length

these results are
the highest precision direct measurement of the mass difference of nuclei/anti-nuclei
improved by one to two orders of magnitude wrt. previous measurements
(dating back to 1965 and 1971)
Strangeness enhancement

Hyperon-to-pion ratio

(c) \(\frac{\Xi}{\pi} \)

\(\frac{\Omega}{\pi} \)

\(10^{-3} \)

\(10^{-4} \)

ALICE Pb-Pb at 2.76 TeV
ALICE pp at 7 TeV
ALICE pp at 900 GeV
STAR Au-Au, pp at 200 GeV
ALICE Pb-Pb at 2.76 TeV
ALICE pp at 7 TeV
STAR Au-Au, pp at 200 GeV

Clear increase of strangeness production from minimum bias pp to central Pb-Pb collisions

One of the first proposed QGP signatures
Rafelski & Müller, PRL 48 (1982) 1066
Strangeness enhancement

also measured in pp and p-Pb collisions as a function of charged-particle multiplicity

first observation of enhanced production of strange particles in pp and p-Pb collisions

ratios to pions reach values measured in Pb-Pb collisions

PYTHIA cannot reproduce the data
Charged particles in pp@13 TeV

pseudorapidity dependence

\[
\langle dN_{\text{ch}}/d\eta \rangle
\]

measured in INEL events and in events with at least one charged particle in \(|\eta| < 1\)

agreement with CMS results for INEL class

charged-particle multiplicity density

at mid-rapidity, \(|\eta| < 0.5\)

5.31 ± 0.18 \hspace{1em} (INEL)

6.46 ± 0.19 \hspace{1em} (INEL>0)
Charged particles in pp@13 TeV

transverse-momentum dependence

\[\frac{1}{N_{ev}} \frac{d^2N}{dp_T^2 d\eta} (\text{GeV}/c^2) \]

\[\eta \mid < 0.8 \]

MC / Data

\[0.5 - 1.5 \]

\[0.5 - 10 \]

Ratio to 7 TeV

\[1.2 - 2.2 \]

\[10^{-1} - 10^{-7} \]

ALICE, pp, \(\sqrt{s} = 13 \) TeV, INEL>0
charged particles, \(\mid \eta \mid < 0.8 \)

\[p_T \text{ distribution measured} \]

for events with at least one
charged particle in \(\mid \eta \mid < 1 \)

\[0.15 < p_T < 20 \text{ GeV}/c \]

\[\mid \eta \mid < 0.8 \]

\[\text{spectrum significantly harder than at } \sqrt{s} = 7 \text{ TeV} \]

\[\text{crucial measurements to tune} \]

Monte Carlo models

Roberto Preghenella

arXiv:1509.08734 [nucl-ex]
Charged particles in pp@13 TeV

evolution of p_T spectra with multiplicity

ALICE, pp, $\sqrt{s} = 13$ TeV, charged particles, $|\eta| < 0.8$

Data, $\langle N_{ch}^{acc} \rangle = 6.7$, $\langle N_{ch} \rangle = 9.4$ ($p_T > 0.15$ GeV/c)

- $1 \leq N_{ch}^{acc} < \langle N_{ch}^{acc} \rangle$
- $\langle N_{ch}^{acc} \rangle \leq N_{ch}^{acc} < 2\langle N_{ch}^{acc} \rangle$
- $N_{ch}^{acc} \geq 2\langle N_{ch}^{acc} \rangle$

ratio of spectra to the inclusive sample
measured in three intervals of multiplicity
low / intermediate / high

general features are reproduced
by the models
but not in all details
Charged particles in Pb-Pb@5.02 TeV

centre-of-mass energy dependence

charged-particle multiplicity density at mid-rapidity, $|\eta| < 0.5$

reaches a value of 1943 ± 56
in most central collisions

much stronger \sqrt{s} dependence than pp

2.4x larger charged-particle multiplicity than p-Pb at same energy

scaled by the average number of participating nucleon pairs $\langle N_{\text{part}} \rangle / 2$
ALICE continues to produce exciting physics results.

Pb-Pb collisions \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \)