

Lead-Lead LHC Operation Highlights in 2015

Michaela Schaumann on behalf of the LHC Heavy-Ion Team

BE Department OP Group

6.37 Z TeV Beam Energy

- Energy exceeds 1 PeV per ion.
- The LHC can provide **3 different collision modes**.
- Reducing of the beam energy from 6.5Z TeV to 6.37Z TeV provided the possibility to compare all collision modes at the same center-of-mass energy per colliding nucleon pair:

• The 2015 HI run covered Pb-Pb@6.37Z TeV and p-p@2.51TeV within one month of operation.

Injector Chain Improvements

- Unexpected optimization of the SPS injection kicker allowed batch spacing of 150ns.
 - \diamond Instead of the original 225ns.
 - ♦ Batch spacing <225ns was not expected before LS2 (if at all).</p>
 - ♦ Increase from 426 to 513 bunches per beam.
 - ♦ Alternating 100/150ns bunch spacing.
- Many different filling schemes were used through the run, gradually improving the performance.

LHC Bunch Intensities

- Injectors provided intensities far above the design.
- Typical structure along the bunch train imprinted due to losses at the SPS injection plateau.
- Similar losses in the LHC imprint variations along the beam.

Secondary Beams created in the Collision

Secondary Beams created in the Collision

Secondary beams impact in superconducting magnets downstream the interaction points.

Deposited power exceeds quench limit. Luminosity limit found at L≈2.5e27cm⁻² s⁻¹ (≅50W into magnet)

Quench Risk Mitigation with Orbit Bumps

Orbit bumps are used to move the secondary beam losses to a less vulnerable location in order to reduce risk of quench.

Loss Pattern around the Ring

Loss spikes around all IPs where ions collide ...

Luminosity Evolution

- Design peak luminosity was exceeded by more than a factor 3 in ATLAS and CMS.
- ALICE was levelled to design saturation value.
- LHCb participated for the first time in Pb-Pb data taking.
- Excellent availability.
- Average turn around time 5-6h.

Summary

- 2in1 Month:
 - p-p reference data: L_{int} ≈ 28 pb⁻¹ (ATLAS, CMS)
 - Pb-Pb data: up to $L_{int} \approx 700 \ \mu b^{-1}$ per Experiment
- Reached more than 3× design luminosity.
- Reached 1 PeV total beam energy.
- Upgrade of batch spacing to 150ns.
- Acquired important knowledge in view of performance limitations and future upgrades.

11

Acknowledgements

Many people in many groups and teams, working on injectors and LHC, have made exceptional efforts, often at short notice.

Without them the heavy-ion run would not have been so successful.

THANK YOU!

www.cern.ch

Schedule

<u>14th Nov.:</u> Start of Pb-Pb commissioning

<u>18th Nov.:</u> Start of p-p reference run

<u>25th Nov.:</u> First Stable Beams at 6.37 Z TeV = **1.045 PeV** total beam energy

20 days for physics production with many interruptions for special machine development experiments, ion source refill, van der Meer scans (luminosity calibration), ALICE polarity reversal, ...

<u>13th Dec.:</u> End of Pb-Pb run

All 4 Experiments Taking Collisions

CMS

CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21:51 2015 CET Run/Event: 262548 / 14582169 Lumi section: 309

AS

Event 2598326 Run 168486 Wed, 25 Nov 2015 12:51:53

LHCb sees its first Pb-Pb collisions

CERN

Event: 419161 2015-11-25 11:12:50 CEST

18/12/2015

stable beams <u>heavy-ion collisions</u>