SPC discussion on the Council question concerning the CERN involvement in high energy frontier machines and related R&D

-Stats Report-

On behalf of SPC

Tatsuya NAKADA
Current European Strategy

c) LHC full exploitation, including the high luminosity upgrade (for Higgs study and direct search for new particles)
Current European Strategy

c) LHC full exploitation, including the high luminosity upgrade (for Higgs study and direct search for new particles)

d) Preparation to propose the next energy frontier machine for the next strategy update (~2018), with the full energy LHC results in hand (pp and e⁺e⁻ colliders for direct and indirect search for new physics)
Current European Strategy

c) LHC full exploitation, including the high luminosity upgrade (for Higgs study and direct search for new particles)

d) Preparation to propose the next energy frontier machine for the next strategy update (~2018), with the full energy LHC results in hand (pp and e^+e^- colliders for direct and indirect search for new physics)

e) Complementary Higgs precision study by an e^+e^- collider (for the ILC, “Europe looks forward to a proposal from Japan to discuss a possible participation”)

NB: d) is for the neutrino activities
Progress in physics since then

- No particle beyond the Standard Model framework has been found so far.
Progress in physics since then

• No particle beyond the Standard Model framework has been found so far.

• No deviation of the Higgs coupling pattern from the Standard Model predictions with the current measurement accuracy.
Progress in physics since then

• No particle beyond the Standard Model framework has been found so far.

• No deviation of the Higgs coupling pattern from the Standard Model predictions with the current measurement accuracy.

• No compelling indication of beyond the Standard Model predictions in any other precision measurements.
Energy frontier projects now…

• LHC exploitation:
 – High Lumi LHC is in progress and integrated in the MTP
 – High Energy LHC is part of FCC-hh studies and an interesting “short term” option as a direct discovery machine depending on the $13(4)$ TeV data outcomes

• Lepton colliders as a direct discovery machine
 – ILC: **Sensitivities** up to ~ 250 GeV (with ~ 500 GeV potential)
 – CLIC: **Sensitivities** up to ~ 1 TeV
 – Muon Collider: not considered by the ESG
 Sensitivities up to multi TeV
 with decreasing technical maturity

• Hadron collider at $\sqrt{s} = O(100$ TeV) as a direct search machine
 – FCC-hh
 – SPPC
 Sensitivities beyond $O(10$ TeV)
Energy frontier projects now...

- Lepton colliders as a Higgs factory
 - **ILC**: from ZH^0 ($\sqrt{s} \approx 250$ GeV) to $\bar{t}tH^0$ ($\sqrt{s} \approx 500$ GeV) (including $\bar{t}t$)
 - **CLIC**: not yet optimized for low energies (foreseen by the time of CDR)
 - **FCC-ee**: from Z to ZH^0 up to $\bar{t}t$ threshold ($\sqrt{s} \approx 350$ GeV)
 - **CEPC**: emerged after ES-update, basically similar to FCC-ee
 - **Muon Collider**: s-channel H^0 production ($\sqrt{s} \approx 125$ GeV)
Observations

• Circular e^+e^- colliders
 – The highest luminosity machine at ZH^0, provide $O(10^{12})$
 – Z for precise electroweak test (for this alone, rings can be smaller).
 – Energy limited to $\sim t\bar{t}$ threshold without expandability.

• Linear e^+e^- colliders
 – Provide adequate number of H^0 for meaningful Higgs precision studies to search for new physics indirectly.
 – New technology able to extend energies reflecting the physics needs.
Observations

- **ILC** is technically at the most advanced stage, ready to proceed as a construction project, if approved.

- **CLIC** is preparing for the TDR for the next Strategy Update in ~2018 with a cost estimate. The currently foreseen resources in the MTP is sufficient for this goal
 - Key R&D: high gradient and efficient acceleration

- **FCC** is preparing for the CDR for the next Strategy Update in ~2018 with a cost estimate. The currently foreseen resources in the MTP is sufficient for this goal
 - Key R&D: high field magnet for basic technology, mass production and cost reduction issues
 - Another important issue: civil engineering cost
Observations

• Muon collider
 – Particularly interesting window of opportunity in the multi TeV (beyond CLIC) sensitivity range
 – As a Higgs factory, superior measurements for the mass and coupling to the muons, while other measurements are less good than e^+e^- colliders due to statistics.
 – Simulation studies show its feasibility. Little hardware effort made so far. R&D on the full chain, e.g. source, cooling, rapid acceleration, storage ring with high background due to the muon decays, etc., still needed.
 – Muon collider activities in the US is ramping down
Info. (P5 recommendations)

- Re-align activities in accelerator R&D, which is critical to enabling future discoveries, based on new physics information and long-term needs (see below, Enabling R&D recommendations). Specifically, reassess the Muon Accelerator Program (MAP), incorporating into the general accelerator R&D program those activities that are of broad importance to accelerator R&D, and consult with international partners on the early termination of Muon Ionization Cooling Experiment (MICE). In addition, in the general accelerator R&D program, focus on outcomes and capabilities that will dramatically improve cost effectiveness for mid- and far-term accelerators.
Reflections

• The European Strategy still provides a valid guideline. Thus, preparation for the next Strategy update inline with the Strategy should be the CERN’s highest priority: i.e. TDR for CLIC and CDR for FCC
Reflections

• The European Strategy still provides a valid guideline. Thus, preparation for the next Strategy update inline with the Strategy should be the CERN’s highest priority:
 i.e. TDR for CLIC and CDR for FCC

• Muon collider becomes interesting if new physics emerges in a region of several TeV. Rigorous R&D plan with well defined timeline supported by European groups together with international partners will be welcome.
Reflections

• The European Strategy still provides a valid guideline. Thus, preparation for the next Strategy update inline with the Strategy should be the CERN’s highest priority: i.e. TDR for CLIC and CDR for FCC

• Muon collider becomes interesting if new physics emerges in a region of several TeV. Rigorous R&D plan with well defined timeline supported by European groups together with international partners will be welcome.

• Development in China (CEPC and SPPC) and Japan (ILC) should be carefully followed