SPC discussion on the Council question concerning the CERN involvement in high energy frontier machines and related R&D
-Stats Report-

On behalf of SPC
Tatsuya NAKADA

Current European Strategy

c) LHC full exploitation, including the high luminosity upgrade (for Higgs study and direct search for new particles)

Current European Strategy

- c) LHC full exploitation, including the high luminosity upgrade (for Higgs study and direct search for new particles)
- d) Preparation to propose the next energy frontier machine for the next strategy update (~2018), with the full energy LHC results in hand (pp and e+e⁻ colliders for direct and indirect search for new physics)

Current European Strategy

- c) LHC full exploitation, including the high luminosity upgrade (for Higgs study and direct search for new particles)
- d) Preparation to propose the next energy frontier machine for the next strategy update (~2018), with the full energy LHC results in hand (pp and e+e⁻ colliders for direct and indirect search for new physics)
- e) Complementary Higgs precision study by an e⁺e⁻ collider (for the ILC, "Europe looks forward to a proposal from Japan to discuss a possible participation")

NB: d) is for the neutrino activities

Progress in physics since then

• No particle beyond the Standard Model framework has been found so far.

Progress in physics since then

- No particle beyond the Standard Model framework has been found so far.
- No deviation of the Higgs coupling pattern from the Standard Model predictions with the current measurement accuracy.

Progress in physics since then

- No particle beyond the Standard Model framework has been found so far.
- No deviation of the Higgs coupling pattern from the Standard Model predictions with the current measurement accuracy.
- No compelling indication of beyond the Standard Model predictions in any other precision measurements.

Energy frontier projects now...

- LHC exploitation:
 - High Lumi LHC is in progress and integrated in the MTP
 - High Energy LHC is part of FCC-hh studies and an interesting "short term" option as a direct discovery machine depending on the 13(4) TeV data outcomes
- Lepton colliders as a direct discovery machine
 - ILC: Sensitivities up to ~250 GeV (with ~500 GeV potential)
 - **CLIC: Sensitivities** up to ~1 TeV
 - Muon Collider: not considered by the ESG
 Sensitivities up to multi TeV

with decreasing technical maturity

- Hadron collider at $\sqrt{s} = O(100 \text{ TeV})$ as a direct search machine
 - FCC-hh
 - SPPC

Sensitivities beyond O(10 TeV)

Energy frontier projects now...

- Lepton colliders as a Higgs factory
 - ILC: from ZH⁰ ($\sqrt{s}\approx250$ GeV) to $\overline{t}tH^0$ ($\sqrt{s}\approx500$ GeV) (including $\overline{t}t$)
 - CLIC: not yet optimized for low energies (foreseen by the time of CDR)
 - FCC-ee: from Z to ZH⁰ up to $t\bar{t}$ threshold (√s≈350 GeV)
 - CEPC: emerged after ES-update, basically similar to FCC-ee
 - Muon Collider: *s*-channel H⁰ production (\sqrt{s} ≈125 GeV)

Observations

- Circular e⁺e⁻ colliders
 - The highest luminosity machine at ZH⁰, provide $O(10^{12})$
 - Z for precise electroweak test (for this alone, rings can be smaller).
 - Energy limited to ~tt threshold without expandability.
- Linear e⁺e⁻ colliders
 - Provide adequate number of H⁰ for meaningful Higgs precision studies to search for new physics indirectly.
 - New technology able to extend energies reflecting the physics needs.

Observations

- ILC is technically at the most advanced stage, ready to proceed as a construction project, if approved.
- CLIC is preparing for the TDR for the next Strategy Update in ~2018 with a cost estimate. The currently foreseen resources in the MTP is sufficient for this goal
 - Key R&D: high gradient and efficient acceleration
- FCC is preparing for the CDR for the next Strategy Update in ~2018 with a cost estimate. The currently foreseen resources in the MTP is sufficient for this goal
 - Key R&D: high field magnet for basic technology, mass production and cost reduction issues
 - Another important issue: civil enginerring cost

Observations

Muon collider

- Particularly interesting window of opportunity in the multi TeV (beyond CLIC) sensitivity range
- As a Higgs factory, superior measurements for the mass and coupling to the muons, while other measurements are less good than e⁺e⁻ colliders due to statistics.
- Simulation studies show its feasibility. Little hardware effort made so far. R&D on the full chain, e.g. source, cooling, rapid acceleration, storage ring with high background due to the muon decays, etc., still needed.
- Muon collider activities in the US is ramping down

Info. (P5 recommendations)

• Re-align activities in accelerator R&D, which is critical to enabling future discoveries, based on new physics information and long-term needs (see below, Enabling R&D recommendations). Specifically, reassess the Muon Accelerator Program (MAP), incorporating into the general accelerator R&D program those activities that are of broad importance to accelerator R&D, and consult with international partners on the early termination of Muon Ionization Cooling Experiment (MICE). In addition, in the general accelerator R&D program, focus on outcomes and capabilities that will dramatically improve cost effectiveness for mid- and far-term accelerators.

Reflections

• The European Strategy still provides a valid guideline. Thus, preparation for the next Strategy update inline with the Strategy should be the CERN's highest priority:
i.e. TDR for CLIC and CDR for FCC

Reflections

- The European Strategy still provides a valid guideline. Thus, preparation for the next Strategy update inline with the Strategy should be the CERN's highest priority:
 i.e. TDR for CLIC and CDR for FCC
- Muon collider becomes interesting if new physics emerges in a region of several TeV. Rigorous R&D plan with well defined timeline supported by European groups together with international partners will be welcome.

Reflections

- The European Strategy still provides a valid guideline. Thus, preparation for the next Strategy update inline with the Strategy should be the CERN's highest priority:
 i.e. TDR for CLIC and CDR for FCC
- Muon collider becomes interesting if new physics emerges in a region of several TeV. Rigorous R&D plan with well defined timeline supported by European groups together with international partners will be welcome.
- Development in China (CEPC and SPPC) and Japan (ILC) should be carefully followed