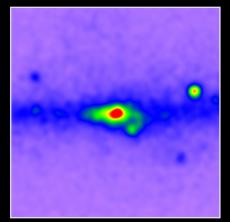
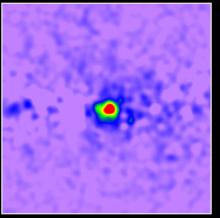
Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions

Disrupted Globular Clusters as the Source of the *Fermi* Excess


Gamma Rays and Dark Matter

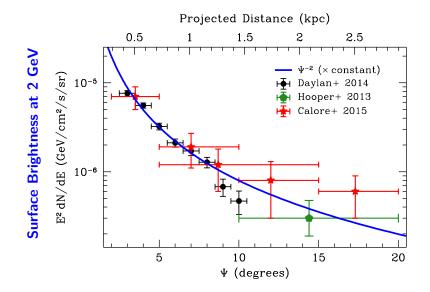
 $\label{eq:started} Timothy \ Brandt \\ NASA \ Sagan \ Fellow, \ Institute \ for \ Advanced \ Study \\ with \ Bence \ Kocsis, \ IAS \ \rightarrow \ Eötvös \ Loránd \ University, \ Budapest \\$


10 December 2015

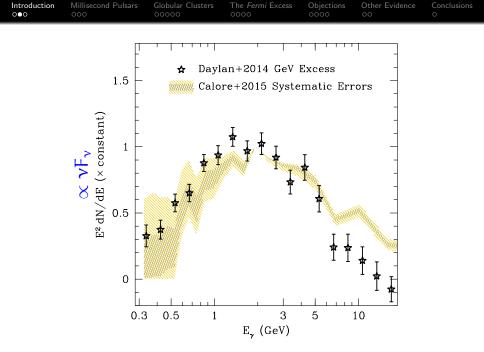
Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
•00						

Uncovering a gamma-ray excess at the galactic center

Unprocessed map of 1.0 to 3.16 GeV gamma rays



Known sources removed


Daylan et al. (2014)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

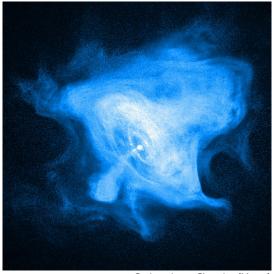
◆□> ◆□> ◆三> ◆三> ● 三 のへの

Introduction M	1illisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
000 0						

- Dark matter annihilation?
- Millisecond pulsars?
- Young pulsars?
- Cosmic ray outbursts?
- Background systematics?

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
000	000	00000	0000	0000	00	0

• Millisecond pulsars?


- I How do we explain the observed morphology?
- Why aren't the millisecond pulsar progenitors there?
- Hard luminosity function-shouldn't we have seen individual pulsars?

And the spectrum isn't quite right?

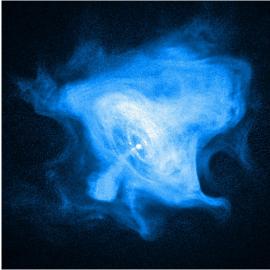
Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
	000					

Normal pulsars:

- $\bullet \ P \sim 1 \ s$
- $\bullet~B\sim 10^{12}~G$
- Mostly single
- $\bullet \ t_{spindown} \sim 10^5 \ years$

Crab pulsar, Chandra (X-ray)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで


Introduction	Millisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
	000					

Normal pulsars:

- $\bullet \ P \sim 1 \ s$
- $B \, \sim \, 10^{12}~G$
- Mostly single
- $\bullet \ t_{spindown} \sim 10^5 \ years$

Millisecond pulsars:

- $\bullet~P\sim 5~ms$
- $B \sim 10^8 \text{ G}$
- Mostly in binaries
- $\bullet \ t_{spindown} \sim 10^{10} \ years$

Crab pulsar, Chandra (X-ray)

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
	000					

MSPs: E_{rot} up to 10^{52} erg

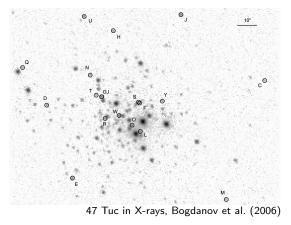
"Recycled" pulsars, spun up by mass transfer

Accretion phase: **low-mass** X-ray binary (LMXB)

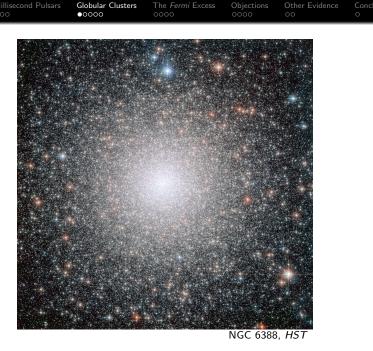
LMXBs, MSPs **much** more common in globular clusters

47 Tucana, Dieter Willasch

・ロト ・聞ト ・ヨト ・ヨト


Introduction	Millisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
	000					

MSPs: E_{rot} up to 10^{52} erg

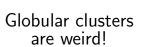

"Recycled" pulsars, spun up by mass transfer

Accretion phase: low-mass X-ray binary (LMXB)

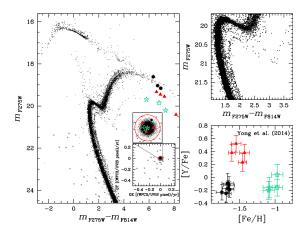
LMXBs, MSPs **much** more common in globular clusters

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
		0000				


 ${\sim}150$ known Galactic globular clusters

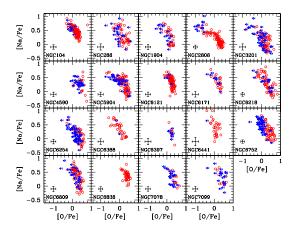
- \bullet ${\sim}10^4{-}10^6~M_{\odot}$
- Spherically distributed
- \gtrsim 10 Gyr old
- Range of metallicities
- $\bullet~Up$ to ${\sim}10^5~M_{\odot}\,pc^{-3}$



Credit: Francesco Ferraro

Introduction	Millisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
		00000				

- Exotic objects
- Multiple populations
- Odd abundances


(日) (同) (日) (日)

Milone et al. (2015)

000 000 00000 0000 00 0	Introduction	Millisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
			00000				

Globular clusters are weird!

- Exotic objects
- Multiple populations
- Odd abundances

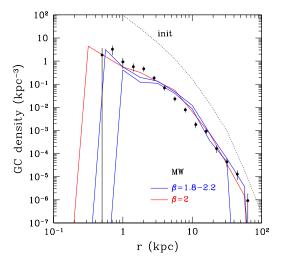
(日) (同) (日) (日)

Carretta et al. (2009)

Introduction	Millisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
		00000				

GCs are dynamical systems with long, but finite, lifetimes

6144 stars, credit Simon Zwart & Frank Summers

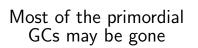

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∃ \0 < \0</p>

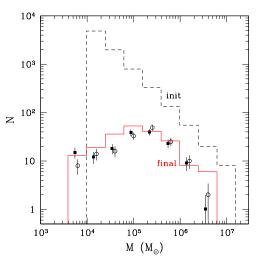
Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
		00000				

Most of the primordial GCs may be gone

- Evaporation
- Dynamical friction
- Tidal disruption



< 4 ₽ > <


3 ×

Gnedin et al. (2014)

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
		00000				

- Evaporation
- Dynamical friction
- Tidal disruption

・ロト ・ 一下・ ・ ヨト ・

Gnedin et al. (2014)

-

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
			0000			

The clusters may be gone, but the stars and MSPs remain.

Where are they now?

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
			0000			

10⁹

ini Take results of toy 108 $M_{gc}(<r)$ (M_{\odot}) model to recover current GC properties 107 MW Scale to L_{γ}/M_* of observed $\beta = 1.8 - 2.2$ BH $M_{max} = 5e6 - 2e7$ extant GCs

106

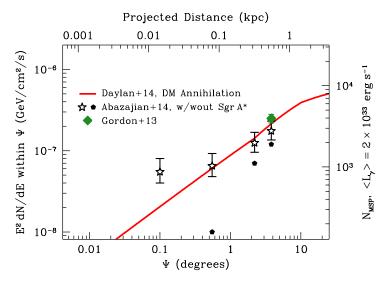
 10^{-3}

10-2

10-1

r (kpc)

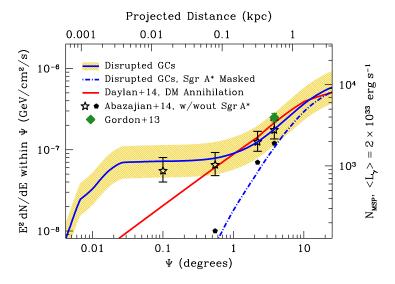
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで


10

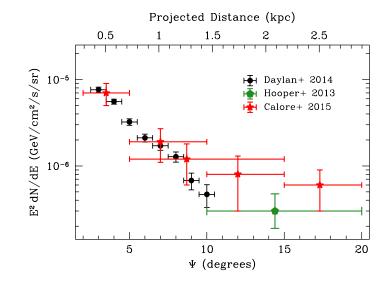
Gnedin et al. (2014)

10²

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
			0000			

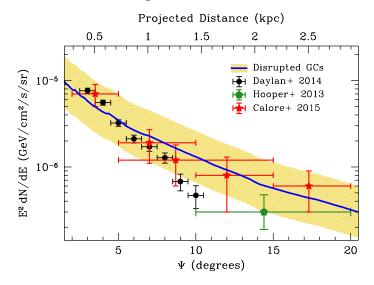

Results: 2 GeV Flux Within a Circular Aperture of Radius Ψ

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで



Results: 2 GeV Flux Within a Circular Aperture of Radius Ψ

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
			0000			


Results: 2 GeV Surface Brightness

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
			0000			

Results: 2 GeV Surface Brightness

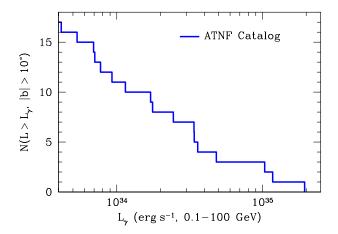
▲ロト ▲圖ト ▲画ト ▲画ト 二直 - の久(で)

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
				0000		

Objections to Millisecond Pulsars

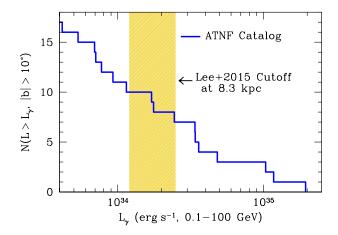
- () No theoretical reason to expect observed distribution out to $\sim 2 \text{ kpc}$
- Pulsar progenitors (LMXBs) aren't there
- Suminosity function is hard-should have seen individual pulsars

Spectrum isn't quite right

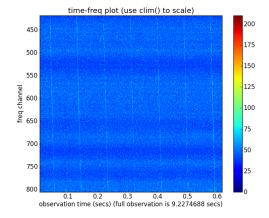

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
				0000		

Objections to Millisecond Pulsars

- O No theoretical reason to expect observed distribution out to ~2 kpc
 - Dissolved globular clusters
- Pulsar progenitors (LMXBs) aren't there
 - Millisecond pulsar creation ceases when clusters dissolve
- Uuminosity function is hard-should have seen individual pulsars


Spectrum isn't quite right

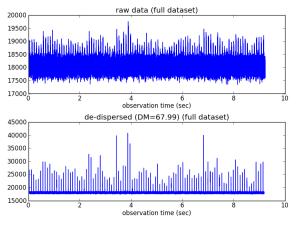
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
				0000		

Observable: dispersion measure



Vela pulsar, KAT-7 (radio)

▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

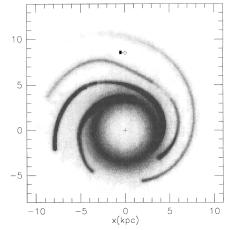
Objection: MSPs are too luminous at 2 GeV

Observable: dispersion measure

Vela pulsar, KAT-7 (radio)

(日) (同) (日) (日)

ъ


y(kpc)

Objection: MSPs are too luminous at 2 GeV

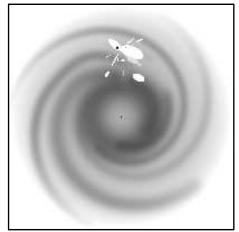
Distances almost always from dispersion measures

$$\mathsf{DM} = \int_0^{\mathsf{dist}} n(e^-) ds$$

Requires modeling free electron density

Taylor & Cordes (1993)

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

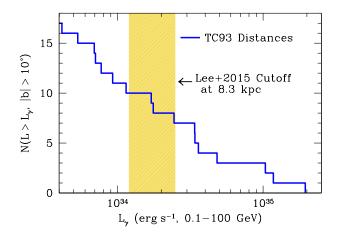

Introduction Millisecond Pulsars Globular Clusters The Fermi Excess Objections Other Evidence Conclusions

Objection: MSPs are too luminous at 2 GeV

Distances almost always from dispersion measures

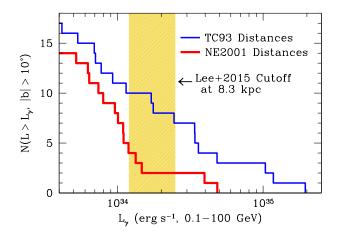
$$\mathsf{DM} = \int_0^{\mathsf{dist}} n(e^-) ds$$

Requires modeling free electron density



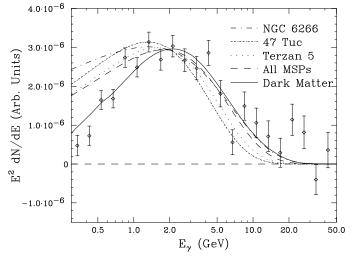
Cordes & Lazio (2002)

-


ヘロト 人間ト 人団ト 人団ト

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
				0000		

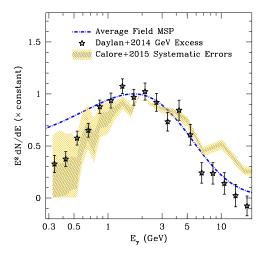
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



Only a problem with questionable dispersion measure distances

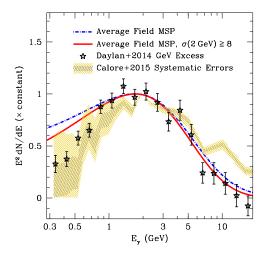
◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Objection: spectrum of GeV excess is too soft to be MSPs

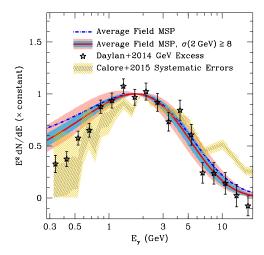


Daylan et al. (2014)

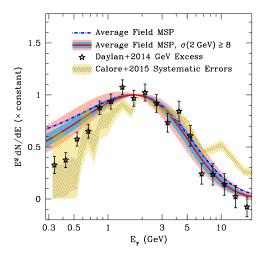
◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ● ● の Q ()・



Objection: spectrum of GeV excess is too soft to be MSPs


Unweighted average of Fermi MSPs

Objection: spectrum of GeV excess is too soft to be MSPs


2 GeV-Selected, Luminosity Weighted

Objection: spectrum of GeV excess is too soft to be MSPs

Bootstrap Sample Variances Added

Objection: spectrum of GeV excess is too soft to be MSPs

Biases, systematics, etc. $\Rightarrow \lesssim 2\sigma$ discrepancy

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
				0000		

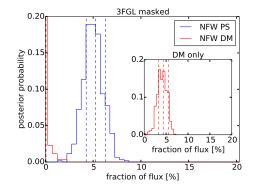
Objections to Millisecond Pulsars

- () No theoretical reason to expect observed distribution out to ${\sim}2~{\rm kpc}$
- Pulsar progenitors (LMXBs) aren't there
- S Luminosity function is hard-should have seen individual pulsars

Spectrum isn't quite right

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
				0000		

Objections to Millisecond Pulsars

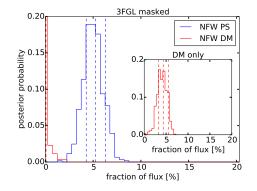

- In the order of the order of
 - Dissolved globular clusters
- Pulsar progenitors (LMXBs) aren't there
 - Millisecond pulsar creation ceases when clusters dissolve
- Suminosity function is hard-should have seen individual pulsars

- Only with highly questionable distances
- Spectrum isn't quite right
 - $\sim 1.5\sigma$ or 2σ discrepancy

000 000 00000 0000 0 0 0	Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
						•0	

Other Evidence:

- Fermi excess looks like unresolved point sources
 - Lee et al. (2015)
 - also Bartels et al. (2015), talks by Daylan, Zechlin, Portillo

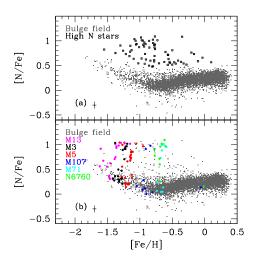

(日)、

э

000 000 0000 0000 000 00 00	Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
						•0	

Other Evidence:

- Fermi excess looks like unresolved point sources
 - Lee et al. (2015)
 - also Bartels et al. (2015), talks by Daylan, Zechlin, Portillo

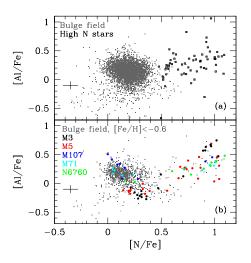

(日)、

If you are allowed a population of point sources with the right spatial distribution, the favored (diffuse) dark matter contribution is **zero**.

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
					0•	

Bulge Chemistry

- $\sim 1\%$ of bulge stars show strong Al, N enhancements
- $\sim \frac{1}{2}$ of globular cluster stars show similar enhancements
- $\Rightarrow \sim 2\%$ of bulge is dissolved globular clusters?


Schiavon et al. (2015), submitted

(D) (A) (A) (A) (A) (A)

Introduction I	Millisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
					00	

Bulge Chemistry

- $\sim 1\%$ of bulge stars show strong Al, N enhancements
- $\sim \frac{1}{2}$ of globular cluster stars show similar enhancements
- $\Rightarrow \sim 2\%$ of bulge is dissolved globular clusters?

Schiavon et al. (2015), submitted

(日) (同) (日) (日)

Introduction	Millisecond Pulsars	Globular Clusters	The <i>Fermi</i> Excess	Objections	Other Evidence	Conclusions
						•

How can we confirm this scenario?

- Better models of GC, MSP formation
- 2 Find the MSPs! (pulsing γ rays, radio)
- Other (chemical?) evidence of dissolved GCs

Introduction	Millisecond Pulsars	Globular Clusters	The Fermi Excess	Objections	Other Evidence	Conclusions
						•

How can we confirm this scenario?

- Better models of GC, MSP formation
- 2 Find the MSPs! (pulsing γ rays, radio)
- Other (chemical?) evidence of dissolved GCs

Is the *Fermi* excess the first **direct** evidence for globular cluster destruction?