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Uncovering a gamma-ray excess at the galactic center

Unprocessed map of 1.0 to 3.16 GeV gamma rays Known sources removed

Daylan et al. (2014)
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o Dark matter annihilation?

o Millisecond pulsars?
o Young pulsars?
o Cosmic ray outbursts?

o Background systematics?
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o Millisecond pulsars?

@ How do we explain the observed morphology?

@ Why aren't the millisecond pulsar progenitors there?

© Hard luminosity function—shouldn’t we have seen individual
pulsars?

© And the spectrum isn't quite right?



Millisecond Pulsars
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Normal pulsars:
e P~1s
e B~1012G
@ Mostly single

5
@ tspindown ~ 10 years

Crab pulsar, Chandra (X-ray)



Millisecond Pulsars
®00

Normal pulsars:
@eP~1s
e B~102G
@ Mostly single
@ tepindown ~ 10° years

Millisecond pulsars:

@ P~5ms
e B~108 G

@ Mostly in binaries

10
@ tspindown ~ 107" years
Crab pulsar, Chandra (X-ray)
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MSPs: E. up to 10° erg

“Recycled” pulsars, spun up
by mass transfer

Accretion phase: low-mass
X-ray binary (LMXB)

LMXBs, MSPs much more
common in globular clusters

&

47 Tucan, Deter WiIIasch
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MSPs: E. up to 10° erg
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47 Tuc in X-rays, Bogdanov et al. (2006)



Globular Clusters
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NGC 6388, HST



Globular Clusters
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~150 known Galactic globular
clusters

~10%-10° M

Spherically distributed

210 Gyr old

Range of metallicities

Up to ~10° Mg pc—3

Credit: Francesco Ferraro
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GCs are dynamical systems with long, but finite, lifetimes

6144 stars, credit Simon Zwart & Frank Summers
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The clusters may be gone,
but the stars and MSPs remain.

Where are they now?



The Fermi Excess
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Results: 2 GeV Flux Within a Circular Aperture of Radius ¥
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The Fermi Excess
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Results: 2 GeV Flux Within a Circular Aperture of Radius ¥
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Results: 2 GeV Surface Brightness

Projected Distance (kpc)

0.5 1 1.5 2 2.5

-I T I T T T T I T T T T I T T T T I T T T T I T T T I-
# 1075 - F4 Daylan+ 2014 .
D E)—%( 1 Hooper+ 2013 ]
E C M Calore+ 2015 ]
Q L HeH _ 4
= - = = 4
= 1076 - -
o] = —— B
E C "{" 1
s Tl -
Y ]
= B I 1
-I 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I-

5 10 15 20

¥ (degrees)



The Fermi Excess
ocooe

Results: 2 GeV Surface Brightness
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Objections to Millisecond Pulsars

© No theoretical reason to expect observed distribution out to ~2 kpc

@ Pulsar progenitors (LMXBs) aren't there

© Luminosity function is hard—should have seen individual pulsars

@ Spectrum isn't quite right
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» Dissolved globular clusters

@ Pulsarprogenitors{LMXBs)-aren't-there

» Millisecond pulsar creation ceases when clusters dissolve

© Luminosity function is hard—should have seen individual pulsars

@ Spectrum isn't quite right
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Objection: MSPs are too luminous at 2 GeV
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Objection: MSPs are too luminous at 2 GeV
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Objection: MSPs are too luminous at 2 GeV

time-freq plot (use clim() to scale)
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Objection: MSPs are too luminous at 2 GeV

raw data (full dataset)
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Objection: MSPs are too luminous at 2 GeV
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Objection: MSPs are too luminous at 2 GeV

Distances almost always
from dispersion measures

dist
DM = J n(e )ds
0

Requires modeling free
electron density

Cordes & Lazio (2002)
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Objection: MSPs are too luminous at 2 GeV
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Objection: MSPs are too luminous at 2 GeV
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Objection: spectrum of GeV excess is too soft to be MSPs
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Objection: spectrum of GeV excess is too soft to be MSPs
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Objection: spectrum of GeV excess is too soft to be MSPs

..... - Average Field MSP
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Objection: spectrum of GeV excess is too soft to be MSPs

..... - Average Field MSP
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Objection: spectrum of GeV excess is too soft to be MSPs

..... - Average Field MSP
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Objections to Millisecond Pulsars

© No theoretical reason to expect observed distribution out to ~2 kpc
@ Pulsar progenitors (LMXBs) aren't there
© Luminosity function is hard—should have seen individual pulsars

@ Spectrum isn't quite right
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» Dissolved globular clusters

Q Pulsar progenitors (LMXBs) aren't there

» Millisecond pulsar creation ceases when clusters dissolve

O Luminosity function is_hard—sholdt .y

» Only with highly questionable distances

@ Spectrum isn't quite right
» ~1.50 or 20 discrepancy
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3FGL masked

— NFWPS
— NFW DM

Other Evidence:

0.2 2Monly

Fermi excess looks like
unresolved point sources

o Lee et al. (2015)

@ also Bartels et al. (2015), ik R
. 0 5 10 15 20
talks by Daylan, Zechlin, fraction of flux [%]
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fraction of flux [%]
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Other Evidence
®0

3FGL masked

— NFWPS
— NFW DM

Other Evidence:

0.2 2Monly

Fermi excess looks like
unresolved point sources

o Lee et al. (2015)

@ also Bartels et al. (2015), ik R
. 0 5 10 15 20
talks by Daylan, Zechlin, fraction of flux [%]

Portillo 0-00 5 10 15 20
fraction of flux [%]

0.1-

posterior probability

0.0

If you are allowed a population of point sources with the right spatial
distribution, the favored (diffuse) dark matter contribution is zero.
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Bulge Chemistry

e ~1% of bulge stars show
strong Al, N enhancements

° ~% of globular cluster stars
show similar enhancements

~2% of bulge is dissolved
globular clusters?
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Schiavon et al. (2015), submitted
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Conclusions
.

How can we confirm this scenario?
@ Better models of GC, MSP formation

@ Find the MSPs! (pulsing 7y rays, radio)
© Other (chemical?) evidence of dissolved GCs



Conclusions
.

How can we confirm this scenario?

@ Better models of GC, MSP formation
@ Find the MSPs! (pulsing 7y rays, radio)
© Other (chemical?) evidence of dissolved GCs

Is the Fermi excess the first direct evidence for
globular cluster destruction?
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