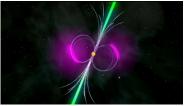
Inference of Dim Gamma-Ray Point Sources Using Probabilistic Catalogues

Tansu Daylan

Harvard University Department of Physics

with Stephen K. N. Portillo & Douglas P. Finkbeiner

Dark Matter & Gamma Rays 2015, Obergurgl, Austria


09 December 2015

1 Distinguishing diffuse and point source emission

2 Point source inference using random catalogues

- The morphologies of the expected gamma-ray signal from an unresolved population of MSPs and dark matter annihilation are similar.
- ✓ However their photon statistics are different, i.e., diffuse emission is equivalent to emission from a collection of "1-photon" emitters.
- ✓ In general, there are N_m "*m*-photon" emitters in an unresolved MSP population, where N_m is itself Poisson distributed with mean μ_m

$$p_{N_m} \sim \operatorname{Po}(N_m; \mu_m) = \frac{\mu_m^{N_m}}{N_m!} e^{-\mu_m}.$$

✓ The PDF of observing k photons from a pixel that has n_m m-photon sources is no longer Poisson distributed


$$p_k^m = \begin{cases} p_{n_m} & \text{if } k = mn_m \\ 0 & \text{o/w} \end{cases}$$

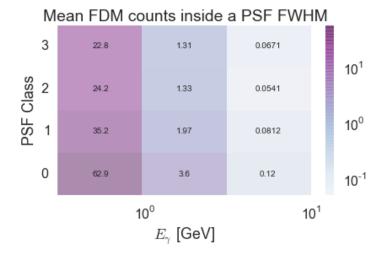
✓ Summing p_k^m over all m (or rather taking the product of the relevant generating functions), the level of non-Poissonity can be exploited to determine the nature of the excess (Malyshev & Hogg 2011, Lee et al. 2014, Lee et al. 2015).

Mock data, 0.3 GeV - 1 GeV, PSF0

Inference using random catalogues

Deterministic catalgues

- ✓ Deterministic catalogues are lists of sources with a hard cut on the detection significance therefore they are false-positive-free (one hopes!).
- ✓ After all, you don't want to write your PhD thesis on the acceleration mechanisms of a pulsar that exists with a probability of 0.5.

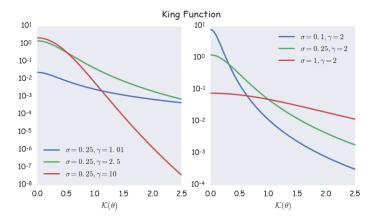


- However for a model-choice problem, i.e., whether a population of sources exists or not, deterministic catalogues waste information!
- They can also fail when there are overlapping sources or when the flux yield of the population is dominated by its dim members.

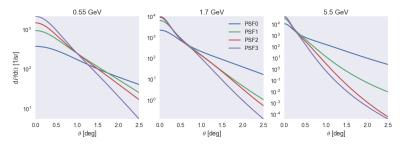
Probabilistic Catalogues

- ✓ A probabilistic catalogue is a list of sources that contains false positives with a small, e.g., 1 count per source.
- Although individual samples are not maximum likelihood solutions, they can be assigned probabilities.
- ✓ Stacking of such samples from the catalogue space allows us to draw conclusions about the population characteristics of the expected dim PS population below the 3FGL flux limit.
- ✓ We aim to test the PS hypothesis of the inner galaxy excess by sampling catalogues consistent with the energy and PSF binned Pass 8 Fermi-LAT data.

PS detection significance in the NGP region



Caveats of the method


- There is potentially small scale-structure in the data not accounted by the Fermi Diffuse Model.
- ✓ Sampling of the product space of catalogues is time-expensive, i.e., requires many CPU X grad student hours.
- ✓ The likelihood topology is degenerate.
- The method is extremely sensitive to the PSF modeling of the bright sources.

Fermi PSF

$$\mathcal{K}(x) = \frac{1}{2\pi\sigma^2} \left(1 - \frac{1}{\gamma}\right) \left(-\frac{x^2}{2\sigma^2\gamma}\right)^{-\gamma}$$

Fermi PSF

Point Spread Function

Fermi PSF

PSF FWHM				
3	0.919°	0.387°	0.205°	1.8
3	0.919	0.387	0.205	1.6
S				1.4
PSF Class	0.989°	0.394°	0.186°	1.2
0				1.0
S 1	1.26°	0.495°	0.222°	0.8
<u>L</u>				0.6
0	1.87°	0.716°	0.302°	0.4
				0.2
0.3		1 3	1	
E_γ [GeV]				

Hierarchichal Bayesian inference

- ✓ We construct a hierarchical Bayesian model where N PS contribute to the gamma-ray flux dominated by a diffuse background.
- ✓ The priors on the PS components, x (PS sky positions, fluxes, spectral parameters), are imposed conditionally via hyper-parameters, β .

$$P(\lbrace x_{a}\rbrace_{a=1}^{N}, N) = \prod_{a=1}^{N} P(x_{a}|\beta) P(\beta) \times P(N|\mu_{N}) P(\mu_{N})$$

✓ We then sample from the product space $\prod_{N} (\{x_a\}_{a=1}^N, N)$.

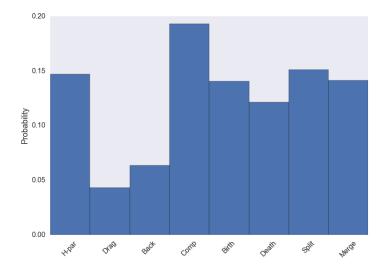
Sampling the components

 \checkmark To avoid the prior fraction suppression in the acceptance ratio,

 $\frac{P(\{x_a\}'|\beta)}{P(\{x_a\}|\beta)},$

we take Gaussian steps in a transformed variable which is uniformly distributed with respect to the prior.

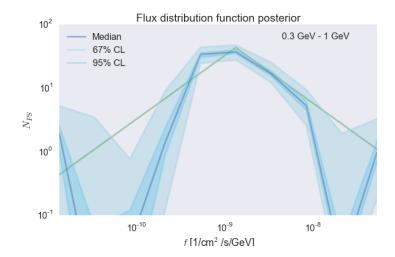
 $\checkmark\,$ We expedite and optimize the sampler to run under \sim 20 ms per sample.


Reversible-Jump MCMC formalism

✓ Reversible Jump MCMC (Green, 1995) is an MCMC formalism that allows trans-dimensional moves, where samples live in the product space of models indexed by different number of parameters.


✓ The acceptance ratio is given by:

$$\alpha = \frac{\pi(x')}{\pi(x)} \times \frac{j_m(x')}{j_m(x)} \times \frac{g(u')}{g(u)} \times \left| \underbrace{\frac{\partial(x', u')}{\partial(x, u)}}_{\equiv J} \right|.$$


Move types

Results

Results

Conclusion

- Probabilistic catalogues allow dim source extraction and model testing based on extracting sub-threshold information from a count map.
- $\checkmark\,$ Runs on mock data can reproduce the true luminosity function
- Using a high-latitude mock data set, we show that one can probe the flux distribution function of an unresolved PS population.