

Cosmic Ray Anisotropies

Obergurgl

Cosmic Ray Anisotropie

The Gamma-ray Sky

Origin of Gamma Rays

- Sources
- Unresolved sources
- Diffuse emission
- Dark matter

The Gamma-ray Sky

Origin of Gamma Rays

- Sources
- Unresolved sources
- Diffuse emission
- Dark matter

Connection to Propagation

- Production mechanism of gamma rays
- Info on cosmic rays?

Cosmic Ray Anisotropies

Transport Equation

 $\frac{\partial \psi_i}{\partial t}$

Transport Equation

 $\frac{\partial \psi_i}{\partial t} = q(\vec{r},p)$

Individual Terms

CR sources

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r},p) \!+\! \nabla \!\cdot \! \mathcal{D} \nabla \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r},p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \vec{v}) \psi_i \right\}$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \vec{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \vec{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Catastrophic losses

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \vec{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Catastrophic losses

Result

 $\bullet~{\rm CR}{\mbox{-}distribution}~\psi_i$

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \vec{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Catastrophic losses

Result

- CR-distribution ψ_i
- ightarrow can compute gamma rays

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \vec{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Catastrophic losses

Result

- CR-distribution ψ_i
- ightarrow can compute gamma rays

Solution

- 3+1 dimensions
- Entire Galaxy

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\vec{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \vec{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \vec{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Catastrophic losses

Result

- CR-distribution ψ_i
- ightarrow can compute gamma rays

Solution

- 3+1 dimensions
- Entire Galaxy
- \rightarrow Numerical solution

Types of Solvers

- Particle-based
 - Monte Carlo
 - SDEs
- Grid-based

Types of Solvers

- Particle-based
 - Monte Carlo
 - SDEs
- Grid-based

Particle Based Solvers

- Monte Carlo
 - Benyamin, Shaviv et al.

Types of Solvers

- Particle-based
 - Monte Carlo
 - SDEs
- Grid-based

Particle Based Solvers

- Monte Carlo
 - Benyamin, Shaviv et al.
- SDEs
 - Zhang, Farahat et al., Effenberger et al.

Types of Solvers

- Particle-based
 - Monte Carlo
 - SDEs
- Grid-based

Particle Based Solvers

- Monte Carlo
 - Benyamin, Shaviv et al.
- SDEs
 - Zhang, Farahat et al., Effenberger et al.
 - Heliosphere

Types of Solvers

- Particle-based
 - Monte Carlo
 - SDEs
- Grid-based

Particle Based Solvers

- Monte Carlo
 - Benyamin, Shaviv et al.
- SDEs
 - Zhang, Farahat et al., Effenberger et al.
 - Heliosphere
- Efficient for point-wise results

Types of Solvers

- Particle-based
 - Monte Carlo
 - SDEs
- Grid-based

Particle Based Solvers

- Monte Carlo
 - Benyamin, Shaviv et al.
- SDEs
 - Zhang, Farahat et al., Effenberger et al.
 - Heliosphere
- Efficient for point-wise results

Finite Differences Approaches

Different Codes

- Semi-analytical:
 - Usine
- Fully numerical:
 - Galprop
 - DRAGON
 - Picard

Finite Differences Approaches

Different Codes

- Semi-analytical:
 - Usine
- Fully numerical:
 - Galprop
 - DRAGON
 - Picard

Other Approaches

- Green's functions (Büsching et al.)
- Fluid description (Hanasz et al.)

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Numerical Galaxy Model

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network

Numerical Galaxy Model

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- \leftrightarrow Galaxy model

Numerical Galaxy Model

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- $\leftrightarrow \ \mathsf{Galaxy} \ \mathsf{model}$

Secondaries

- Secondary CRs
- Gamma rays
- Neutrinos

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- $\leftrightarrow \ \mathsf{Galaxy} \ \mathsf{model}$

- Secondary CRs
- Gamma rays
- Neutrinos

Solution Process CR source distribution

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- $\leftrightarrow \ \mathsf{Galaxy} \ \mathsf{model}$

Secondaries

- Secondary CRs
- Gamma rays
- Neutrinos

Solution Process CR source distribution \downarrow Transport solver

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

CR Distribution

Secondaries

- Secondary CRs
- Gamma rays
- Neutrinos

Numerical models

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Gamma-Ray Emission

Secondaries

- Secondary CRs
- Gamma rays
- Neutrinos

Numerical models

Issues in Previous Approaches

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \vec{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \vec{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

• Physics as parameters

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \vec{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \vec{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

• Physics as parameters

Transport Parameters

- Source distribution $q(\vec{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- Spatial convection \vec{v}
- $\bullet~{\rm Energy}~{\rm losses}~\dot{p}$
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \vec{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \vec{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Transport Parameters

- Source distribution $q(\vec{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- Spatial convection \vec{v}
- Energy losses \dot{p}
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \vec{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \vec{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Simplified Parameters

- Diffusion, halo height
- Galaxy model
- Convection

Transport Parameters

- Source distribution $q(\vec{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- Spatial convection \vec{v}
- Energy losses \dot{p}
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \vec{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \vec{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Simplified Parameters

- Diffusion, halo height
- Galaxy model
- Convection

Technical Issues

- Solver
- Local structure ↔ spatial resolution
- Consistency
- \rightarrow See discussion in Kissmann et al. (2012)

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \vec{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \vec{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Simplified Parameters

- Diffusion, halo height
- Galaxy model
- Convection

Technical Issues

- Solver
- Local structure \leftrightarrow spatial resolution
- Consistency
- \rightarrow See discussion in Kissmann et al. (2012)

Gamma-ray Example: Simple Galaxy Model

Idea

- Statistical investigation of propagation
- Fast, simplified simulation models

Idea

- Statistical investigation of propagation
- Fast, simplified simulation models

Examples

- Usine (semi-analytical)
- Galprop (very low resolution)

Idea

- Statistical investigation of propagation
- Fast, simplified simulation models

Application

- Statistical analysis
- Estimate on transport parameters
- Effect of cross sections

(From Putze et al. (2010) A&A 516, A66)

Examples

- Usine (semi-analytical)
- Galprop (very low resolution)

Idea

- Statistical investigation of propagation
- Fast, simplified simulation models

Application

- Statistical analysis
- Estimate on transport parameters
- Effect of cross sections
- But: CRs only

(From Putze et al. (2010) A&A 516, A66)

Examples

- Usine (semi-analytical)
- Galprop (very low resolution)

Development

- Localised sources
- Spatial diffusion:
 - Spatial variation
 - Anisotropy

Development

- Localised sources
- Spatial diffusion:
 - Spatial variation
 - Anisotropy

Examples:

- Spiral-arm source distribution
- Diffusion tensor
- Related codes:
 - DRAGON
 - Picard
 - Effenberger et al.
 - Kopp, Büsching et al.

Development

- Localised sources
- Spatial diffusion:
 - Spatial variation
 - Anisotropy

Examples:

- Spiral-arm source distribution
- Diffusion tensor
- Related codes:
 - DRAGON
 - Picard
 - Effenberger et al.
 - Kopp, Büsching et al.

Development

- Localised sources
- Spatial diffusion:
 - Spatial variation
 - Anisotropy

Examples:

- Spiral-arm source distribution
- Diffusion tensor
- Related codes:
 - DRAGON
 - Picard
 - Effenberger et al.
 - Kopp, Büsching et al.

Solution Approach

- Start with empty Galaxy
- Advance in time until convergence

Solution Approach

- Start with empty Galaxy
- Advance in time until convergence

Problem I

- Characteristic timescales
- Convergence timescales

Solution Approach

- Start with empty Galaxy
- Advance in time until convergence

Problem I

- Characteristic timescales
- Convergence timescales

Characteristic time: ${\sim}50$ yrs

Solution Approach

- Start with empty Galaxy
- Advance in time until convergence

Problem I

- Characteristic timescales
- Convergence timescales

Problem II

- Check for convergence?
- Timestep control

Solution Approach

- Start with empty Galaxy
- Advance in time until convergence

Problem I

- Characteristic timescales
- Convergence timescales

Problem II

- Check for convergence?
- Timestep control
- Problem dependent?

Solution Approach

- Start with empty Galaxy
- Advance in time until convergence

Problem I

- Characteristic timescales
- Convergence timescales

Problem II

- Check for convergence?
- Timestep control
- Problem dependent?

\rightarrow Let's do better

Cosmic Particle Transport: THE NEXT GENERATION

Contents lists available at ScienceOlem

Astroparticle Physics journal homopope: www.elsevier.com/locate/astropart

Ж

PICARD: A novel code for the Galactic Cosmic Ray propagation problem Countral Countral

R. Kissmann

ABSTRACT

Attick Many: Roowed 10 leptember 2011 Reviewd in reviewd hern 10 Jamaay Aeropod 3 Irbenary 2014 Analable online 15 February 2014 Keywordt: Canada Kays Method e namerical Offician

In this manuscript we present a new appreach for the manuscript adultion of the Galaxie Countie Ray propagation problem. We introduce a net find a sing advanced onto paysary manuscript algorithms while making the ground complexity of other multibleted advances. In this payer we present the underlying materials (ketter in complexity or white toxis showing the correctness of the scheme. Finally we show the unbiased of the sample aroungation problem using therease on the body with spatiality to Galaxie the unbiased of the sample aroungation problem using the revene on the body of an applicability to Galaxie.

© 2014 Ebevier B.V. All sights reserved.

1. Introduction

The Galactic Cosmic Bay propagation problem, i.e., the question how Cosmic Rays are transported from their sources to arbitrary incations in the Galaxy, becomes ever more relevant with recent advances in observational techniques. Such observations yield the flux of primary Cosmic Rays (see, e.g., 0.12.2.3) or doo of secwebed in Cosmic Ray transport. The transport of Galactic Cosmic Rays is a diffusion-loss prob-

ion wantport of tallactic connec may in a carbaiton-loss prob-lem (see [15]). That is we have to find a solution of the partial dif-ferential equation:

 $\frac{\partial \phi}{\partial t} = \nabla \cdot (\mathcal{D}^{(2)} \phi) + \nabla \cdot (\bar{u} \phi) = \frac{\partial}{\partial u} \left(p^2 D_{\mu \nu} \frac{\partial}{\partial u} \frac{\phi}{p^2} \right)$ $+ \frac{\partial}{\partial \omega} \left(\hat{\mathbf{y}} \boldsymbol{\psi} - \frac{p}{s} (\nabla \cdot \hat{\mathbf{u}}) \boldsymbol{\psi} \right) = s(\vec{\mathbf{y}}, p, c) - \frac{1}{s} \boldsymbol{\psi}$

losses by fragmentation and subjoactive decay for the current This partial differential equation has been solved using dif-

With the increasing precision of Galactic Countic Ray such numerical codes like Uses (see [11]) that use codes aim at finding the best values for the variables

APh Vol.55 (2014)

Features of Picard

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
- Improved nuclear network
- Speed

Features of PICARD

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
- Improved nuclear network
- Speed

Example Resolution

- Standard CR simulation (e.g., Fermi Diffuse Paper)
 - 2D (1 kpc \times 100 pc)
- Picard
 - $\bullet~$ 3D (up to ${\sim}75~{pc}^3)$

Features of PICARD

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
- Improved nuclear network
- Speed

Example Resolution

- Standard CR simulation (e.g., Fermi Diffuse Paper)
 - 2D (1 kpc \times 100 pc)
- Picard
 - $\bullet~$ 3D (up to ${\sim}75~{pc}^3)$

Example results: Milkyway as spiral galaxy

CR Source Candidates

- Supernova remnants
- Pulsars
- Gamma-ray binaries

CR Source Candidates

- Supernova remnants
- Pulsars
- Gamma-ray binaries
- $\rightarrow\,$ young objects

CR Source Candidates

- Supernova remnants
- Pulsars
- Gamma-ray binaries
- $\rightarrow\,$ young objects
- $\rightarrow\,$ star formation regions

CR Source Candidates

- Supernova remnants
- Pulsars
- Gamma-ray binaries
- \rightarrow young objects
- ightarrow star formation regions

Source Distribution

- Spiral galaxy
- $\rightarrow \text{ Spiral arms}$
- ightarrow Galactic bar

Spiral Galaxy NGC1232

CR Source Candidates

- Supernova remnants
- Pulsars
- Gamma-ray binaries
- ightarrow young objects
- ightarrow star formation regions

Source Distribution

- Spiral galaxy
- \rightarrow Spiral arms
- ightarrow Galactic bar
 - Tracers of spiral structure
- \rightarrow Variety of models

Spiral Galaxy NGC1232

Confrontation with CR Data

CR Data

- CR Fluxes \checkmark
- Secondary / Primary ratios
 - ${}^{10}\text{Be}/{}^9\text{Be}$ Ratio
 - B/C Ratio

Confrontation with CR Data

CR Data

- CR Fluxes \checkmark
- Secondary / Primary ratios
 - ${}^{10}\mathrm{Be}/{}^{9}\mathrm{Be}$ Ratio \checkmark
 - B/C Ratio

Confrontation with CR Data

CR Data

- CR Fluxes \checkmark
- Secondary / Primary ratios
 - ${}^{10}\text{Be}/{}^9\text{Be}$ Ratio \checkmark
 - B/C Ratio

CR Data

- CR Fluxes \checkmark
- Secondary / Primary ratios
 - ${}^{10}\mathrm{Be}/{}^{9}\mathrm{Be}$ Ratio \checkmark
 - B/C Ratio

CR Data

- CR Fluxes \checkmark
- Secondary / Primary ratios
 - ${}^{10}\mathrm{Be}/{}^{9}\mathrm{Be}$ Ratio \checkmark
 - B/C Ratio

CR Data

- CR Fluxes ✓
- Secondary / Primary ratios
 - ${}^{10}\mathrm{Be}/{}^{9}\mathrm{Be}$ Ratio \checkmark
 - B/C Ratio \checkmark

Four-Arm Model

- Adapt parameters
- Fit possible
- Spatial variation

Axially Symmetric Model

CR Data

- CR Fluxes ✓
- Secondary / Primary ratios
 - ${}^{10}\mathrm{Be}/{}^{9}\mathrm{Be}$ Ratio \checkmark
 - B/C Ratio \checkmark

Four-Arm Model

- Adapt parameters
- Fit possible
- Spatial variation

Modified Four-Arm Model

CR Data

- CR Fluxes ✓
- Secondary / Primary ratios
 - ${}^{10}\mathrm{Be}/{}^{9}\mathrm{Be}$ Ratio \checkmark
 - B/C Ratio \checkmark

Four-Arm Model

- Adapt parameters
- Fit possible
- Spatial variation

Impact on gamma rays?

 $\bullet ~{\sim} 100\,\text{GeV}$

Spiral Arms

Spiral Arms

Spiral Arms

Spiral Arms

Spiral Arms

Spiral Arms

Spiral Arms

Spiral Arms

• Two-arm model excluded?

∼1 GeV
~100 GeV

- Two-arm model excluded?
- Galactic centre?

∼1 GeV
∼100 GeV

Spiral Arms

Preliminary Results

- At Galactic centre
- Different source models
- No ISRF scaling yet (see Fermi Diffuse Paper)

Preliminary Results

- At Galactic centre
- Different source models
- No ISRF scaling yet (see Fermi Diffuse Paper)

Preliminary Results

- At Galactic centre
- Different source models
- No ISRF scaling yet (see Fermi Diffuse Paper)

Preliminary Results

- At Galactic centre
- Different source models
- No ISRF scaling yet (see Fermi Diffuse Paper)

Observation

- Change in total flux
- Impact of electrons
- Inverse compton

Preliminary Results

- At Galactic centre
- Different source models
- No ISRF scaling yet (see Fermi Diffuse Paper)

Conclusion

- Dependence on source model
- Other transport parameters
- Numerics?

Observation

- Change in total flux
- Impact of electrons
- Inverse compton

Effect of Convergence

Setup

• Different GALPROP

time-integration parameters

Effect of Convergence

Setup

• Different GALPROP time-integration parameters Result

- Global shift
- Local structure

Conclusion

Transport Modelling

- Range of available codes
- $\bullet~\mbox{Change}~\mbox{2D} \rightarrow \mbox{3D}$
- Resolution
- Improved Transport Physics

Conclusion

Transport Modelling

- Range of available codes
- Change $2D \rightarrow 3D$
- Resolution
- Improved Transport Physics

Gamma Rays

- Local & global flux variation
- Impact of different components

Conclusion

Transport Modelling

- Range of available codes
- Change $2D \rightarrow 3D$
- Resolution
- Improved Transport Physics

Gamma Rays

- Local & global flux variation
- Impact of different components

Galactic Centre

- Here: localised sources
- Possibilities:
 - Anisotropic diffusion
 - Re-acceleration
 - Unresolved sources
 - Matter / Radiation
 - Galactic Wind
- Problems:
 - 2D models insufficient
 - Spatial resolution

