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Motivation and Goals

Origin of the Extragalactic Gamma-ray Background (EGB): 
• Astrophysical sources: 

• Resolved 
• Unresolved 

• Diffuse processes 
• Dark matter annihilation?

? (IGRB)

Goals of the present analysis: 
• Accurately derive the contribution of point sources to the IGRB at higher 

latitudes (|b| > 30°) in a data-driven way using photon statistics 
• Use results to place robust constraints on the contribution of dark matter 

annihilation to the IGRB
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Previous Work

yielding valuable information about the dark sector. No hints of
a DM detection have been claimed up to now using the EGB.
However, competitive limits on the DM annihilation cross
section have been derived in several studies relying on the EGB
intensity (e.g., Abdo et al. 2010a; Bringmann et al. 2014;
Cholis et al. 2014) or the anisotropy level (Gómez-Vargas
et al. 2014).

Here, we use the main result of this analysis—that most of
the EGB emission is produced by known source classes—to
constrain the DM annihilation cross section. We rule out DM
models that, together with point-like sources, overproduce the
EGB emission at s⩾2 level. This is achieved by defining
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where the sum runs over the N bins of the EGB spectrum.
F F F, ,i i AST RO i,EGB , ,DM are the intensities of the EGB, point-like
sources, and DM,  is a renormalization constant of the
nominal integrated source intensity and s =

sá ñF/ ,i ASTRO i ASTRO, , its average uncertainty. In Equation (13),
si is the sum (in quadrature) of the uncertainty on the
unresolved EGB and the systematic uncertainty on the Galactic
foreground (AC14). We use the uncertainties on the unresolved
EGB because the uncertainties on the resolved source intensity
are already taken into account in s . The 2s limits are found
when the DM signal worsens the c ⩾by 42 with respect to the
optimized c2 with a free DM signal normalization (and a free
). Following Ackermann et al. (2014b), predictions of the
cosmological annihilation signal were obtained using both the
halo model (Ullio et al. 2002; Fornasa et al. 2013) and the
power spectrum approach (Serpico et al. 2012; Sefusatti et al.
2014). Though Equation (13) neglects bin-to-bin correlations,
we verified that our DM limits are within 10% of those
obtained if we adopt the foreground model (from AC14) that
gives the most conservative upper limit for each DM signal.
An example of a ruled-out DM signal is reported in Figure 3,

while Figure 4 shows the limits for DM annihilating to
t t+ -bb̄ and channels, including their uncertainties due to the

level of subhalos in our Galaxy and in all DM halos (Sánchez-
Conde & Prada 2014; Ackermann et al. 2014b). Our limits are
compared to the conservative and sensitivity-reach limits
reported in Ackermann et al. (2014b). The former assumes
that the unresolved EGB is entirely due to DM annihilations,

Figure 3. Top panel: integrated emission of blazars (with and without EBL
absorption), compared to the intensity of the EGB (data points from AC14).
Lower panel: as above, but including also the emission from star-forming
galaxies (gray band; Ackermann et al. 2012b) and radio galaxies (black striped
band; Inoue 2011) as well as the sum of all non-exotic components (yellow
band). An example of DM-induced γ-ray signal ruled out by our analysis is
shown by the solid pink line and summed with the non-exotic components
(long-dashed pink line). The inset shows the residual emission, computed as
the ratio of the summed contribution to the EGB spectrum, as a function of
energy as well as the uncertainty due to the foreground emission models
(see AC14).

Figure 4. Upper limits on the self-annihilation cross section for the bb̄ (top)
and t t+ - (bottom) channels as derived in this work (see Section 3) compared
to the conservative and sensitivity-reach limits reported in Ackermann et al.
(2014b). The blue band reflects the range of the theoretical predicted DM
signal intensities due to the uncertainties in the description of DM subhalos in
our Galaxy as well as other extragalactic halos, adopting a cutoff minimal halo
mass of 10 -

:M6 . For comparison, limits reported in the literature are also
shown (Abramowski et al. 2011; Ackermann et al. 2014a; Aleksić et al. 2014).

6

The Astrophysical Journal Letters, 800:L27 (7pp), 2015 February 20 Ajello et al.

Accurately model astrophysical sources:

Ajello et al. [1501.05301]
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Accurately model astrophysical sources:

Ajello et al. [1501.05301]
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Standard Template Analysis

The models: templates
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Fermi p6 diffuse (1) Fermi bubbles (1)
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diffuse background

The models: templates
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Spatial Templates
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Non-Poissonian Template Fit

Poisson Non-Poissonian

Spatial TemplatesThe models: templates

0 40 0 1

Fermi p6 diffuse (1) Fermi bubbles (1)

0 1.5 0 1.5

Isotropic (1) NFW (1)
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diffuse background

p

The models: templates
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The models: templates
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Fermi p6 diffuse (1) Fermi bubbles (1)
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Isotropic point sources

p

Probability of observing k photons in pixel p

P (p)
k =

1

k!

dkP(p)
k

dtk

�����
t=0

P(p)
k = D(p)(t) · G(p)(t)Total Generating 

Function

Lee, Lisanti, Safdi [1412.6099] 
Malyshev and Hogg [1104.0010]
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The Source Count Function

We use Bayesian methods (MultiNest) to find the posterior 
distributions for the free parameters in the model

Number of sources in a given pixel with a flux between F and F+dF 

dN

dF

Flux

n1

n2

Six free parameters: A, Fb1, Fb2, n1, n2, n3

7

n3

Fb2
Fb1
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Simulating astrophysical populations

We consider two representative source classes:

I. Blazars
Subclass of AGN (BL Lacs + FSRQ)  

Fewer and brighter
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E� = 0.1-100 GeV

LDDE Model

3FGL Blazars

Theory LF from Ajello et al. [1501.05301]
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Simulating astrophysical populations

We consider two representative source classes:

I. Blazars II. Star-forming galaxies

Numerous and dim
Subclass of AGN (BL Lacs + FSRQ)  

Fewer and brighter
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3FGL SFGs

Theory LF from Ajello et al. [1501.05301] Theory LF from Tamborra et al. [1404.1189]
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Procedure

1. Specify source count function 
of given astrophysical 
population 

2. Simulate map with  
• PS population 
• Diffuse background model 
• Fermi bubbles 

3. Do non-poissonian template fit  

4. Obtain best-fit source counts 
and energy spectra

Blazar simulation, E� = 0.75� 11.9 GeV

0 20
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The Templates

The models: templates

0 40 0 1

Fermi p6 diffuse (1) Fermi bubbles (1)
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The models: templates
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High-lat analysis on simulation: blazars

Flux from simulated blazars goes almost entirely into 
non-poissonian isotropic template

100 101 102
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High-lat analysis on simulation: source counts

Able to recover source count function consistent with theory input
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High-lat analysis on simulation: SFGs

Flux from simulated SFGs goes almost entirely into  
poissonian isotropic template
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Work in progress

• Apply method to data to obtain an 
accurate estimate of point source 
contribution to the EGB and IGRB

E

E
2
dN

/d
E

• Validate against simulation by comparing to obtained 
spectrum and source counts from simulated 
astrophysical sources 

• DM constraints: obtain conservative, robust constraints 
on the contribution to the non-blazer IGRB due to DM 
annihilation

Fermi IGRB

Iso PS

Iso diffuse
(Illustration)
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Work in progress

• Use tomographic information in order to disentangle 
dark matter and “diffuse” PS (e.g. SFG/mAGN) 
contribution 

Expect templates tracing nearby large-scale 
structure (e.g. 2MASS galaxies) to be more 
correlated with an expected DM annihilation 
component 

Potentially improve DM constraints
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Conclusions

• We are able to use non-poissonian template fitting to measure 
the energy spectrum of unresolved point sources below Fermi 
sensitivity 

• We understand the behavior of astrophysical sources under the 
procedure and can recover the source count function for 
simulated blazars 

• Applications to data will yield robust and conservative 
constraints on DM annihilation 


