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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-

Rechester & Rosenbluth 1978

evolution in z of a coherent patch of B-field lines

�B
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a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-
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FIG. 8: The square of the separation distance between two field lines as a function of the curvilinear abscissa along the field
line. The exponential divergence followed by the diffusion regime is clearly identified. The transition between these two regimes
occurs at s ∼ Lmax.

FIG. 9: Kolmogorov length and magnetic diffusion coefficient as functions of η. The two lengths are normalized to the largest
scale of turbulence Lmax.

of integrating the particle equation of motion. Figure 8 clearly shows this two-step behavior and confirms that the
transition from one regime to the other occurs when s ∼ Lmax.

This calculation allows us to measure the two lengths lK and Dm with a relatively good accuracy. The results are
reported as function of η in Fig. (9).

The effective transverse diffusion of particles in a chaotic magnetic field has been derived by Rechester & Rosen-
bluth [15]. Here we extend their argument by assuming that the primary transverse diffusion is anomalous (sub- or
super-diffusive). The problem can be stated as follows. After n scattering times, parallel diffusion leads to a diffusion
in curvilinear abscissa ⟨∆s2

n⟩ = 2D∥τsn, whereas the transverse primary variation causes transverse displacement such
that ⟨∆x2

⊥⟩ ∼ r2
Lnα, with α = 1 for normal diffusion, and α < 1 for subdiffusion. Because of field line exponential

divergence, until the separation is of order the correlation length, say after nc scatterings, the transverse displace-
ment is amplified exponentially by a factor e2sn/lK with sn =

√

2D∥τsn. After nc scatterings (nc ≫ 1), an effective

Casse, Lemoine, Pelletier 2000

⌘ =
(�B)2

(B + �B)2



Compound diffusion

VOLUME 40, NUMBER 1 PHYSICAL RKVIKW LETTERS 2 JxNUARv 1978

almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-
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FIG. 8: The square of the separation distance between two field lines as a function of the curvilinear abscissa along the field
line. The exponential divergence followed by the diffusion regime is clearly identified. The transition between these two regimes
occurs at s ∼ Lmax.

FIG. 9: Kolmogorov length and magnetic diffusion coefficient as functions of η. The two lengths are normalized to the largest
scale of turbulence Lmax.

of integrating the particle equation of motion. Figure 8 clearly shows this two-step behavior and confirms that the
transition from one regime to the other occurs when s ∼ Lmax.

This calculation allows us to measure the two lengths lK and Dm with a relatively good accuracy. The results are
reported as function of η in Fig. (9).

The effective transverse diffusion of particles in a chaotic magnetic field has been derived by Rechester & Rosen-
bluth [15]. Here we extend their argument by assuming that the primary transverse diffusion is anomalous (sub- or
super-diffusive). The problem can be stated as follows. After n scattering times, parallel diffusion leads to a diffusion
in curvilinear abscissa ⟨∆s2

n⟩ = 2D∥τsn, whereas the transverse primary variation causes transverse displacement such
that ⟨∆x2

⊥⟩ ∼ r2
Lnα, with α = 1 for normal diffusion, and α < 1 for subdiffusion. Because of field line exponential

divergence, until the separation is of order the correlation length, say after nc scatterings, the transverse displace-
ment is amplified exponentially by a factor e2sn/lK with sn =

√

2D∥τsn. After nc scatterings (nc ≫ 1), an effective
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-

Rechester & Rosenbluth 1978
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FIG. 3: Behavior of the averages ⟨∆x2⟩/∆t in units of rLc, as a function of the time interval ∆t in units of tL, for various
turbulence levels (ρ = 0.848), and for both the transverse displacement (lower thin line curves) and parallel displacement (upper
thick curves). One sees the transition from the weakly perturbed propagation regime ⟨∆x2⟩ ∝ ∆t2 to the diffusion regime
⟨∆x2⟩ ∝ ∆t, which appears here as a plateau. The transition duration depends on the turbulence level, and is of order of τs

the scattering time. The diffusion coefficients are given by the levels of the plateaux. Obviously, D∥ ≫ D⊥ for η < 1 and the
two meet in the limit η → 1, as expected.

Turning to the spatial diffusion coefficients, it is interesting to plot the statistical estimators for D∥ and D⊥ given
by Eqs. (4),(6) as a function of time for different turbulence levels, and the result is shown in Fig. (3).

This figure illustrates the transition from the regime in which the particle orbit is weakly perturbed and memory of
the initial conditions is kept to the regime in which this memory is lost and the particle diffuse, ⟨∆x2⟩/∆t ≈constant.
The level of this plateau gives the magnitude of the diffusion coefficient; Fig. (3) also gives an idea of the uncertainty
in our measurement of diffusion coefficients. Finally, this figure also confirms the expected results D∥ ≫ D⊥ when
η ≪ 1 and D∥/D⊥ → 1 as η → 1. It should be pointed out that the initial value of the pitch angle cosine was

µ = 1/
√

2 in all simulations; we have checked that our results are insensitive to this value as long as the turbulence
level η >∼ 0.1, as expected.

In Fig. (4), we show the behavior of the parallel diffusion coefficient as a function of rigidity for various turbulence
levels. The dotted lines correspond to the approximation of D∥ obtained from the calculation of τs using Eq. (4), and
the agreement appears excellent. This study does not confirm the existence of a Bohm scaling. More precisely, the
Bohm diffusion coefficient DB ∝ rLv only applies at η = 1 in the range 0.1 <∼ ρ <∼ 1, in agreement with the similar
conclusion for the scattering function. In all other cases the quasi-linear prediction is verified, i.e. D∥ ∝ ρ1/3 for
ρ < 1. We also found that a diffusion regime exists for rigidities greater than the upper bound of the resonance region,
i.e. ρ > 1, for as far as we have searched, or about 1.5 decade. In this regime ρ > 1, D∥ ∝ ρ7/3, for all values of η.

B. The issue of transverse diffusion

In Fig. (5), we plot the behavior of the transverse diffusion coefficient as a function of rigidity for various turbulence

levels. It is useful to plot also the quantity
(

D⊥/D∥
)1/2

as shown in Fig. (6). Indeed, the noise of the simulation is
then reduced and this figure allows to compare directly the power law behaviors of D⊥ and D∥.

This figure indeed reveals a clear trend. For all η, the ratio D⊥/D∥ is independent of rigidity for ρ < 1 , and
scales as ρ−2 for ρ > 1. A similar regime has been found by Giacalone & Jokipii [8] for ρ < 1, albeit with slightly
lower values than ours. This constancy is interpreted in the following as the signature of diffusion due to the chaotic
wandering of the guide center carrying field lines. The importance of the guiding center diffusion was pointed out by
Jokipii [5] as early as 1966 in order to correct the quasi-linear result; however this derivation does not apply to high
turbulence levels. Finally, the ratio D⊥/D∥ converges as expected to 1 for all ρ when η → 1. However it is interesting
to note that even at η = 0.99, there remains the power law dependence for ρ > 1, D⊥/D∥ ∝ ρ−2.

We have found evidence for subdiffusive regimes ⟨∆x2⟩ ∝ ∆tm, with m < 1, at low enough rigidities ρ <∼ 10−2
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FIG. 3: Behavior of the averages ⟨∆x2⟩/∆t in units of rLc, as a function of the time interval ∆t in units of tL, for various
turbulence levels (ρ = 0.848), and for both the transverse displacement (lower thin line curves) and parallel displacement (upper
thick curves). One sees the transition from the weakly perturbed propagation regime ⟨∆x2⟩ ∝ ∆t2 to the diffusion regime
⟨∆x2⟩ ∝ ∆t, which appears here as a plateau. The transition duration depends on the turbulence level, and is of order of τs

the scattering time. The diffusion coefficients are given by the levels of the plateaux. Obviously, D∥ ≫ D⊥ for η < 1 and the
two meet in the limit η → 1, as expected.

Turning to the spatial diffusion coefficients, it is interesting to plot the statistical estimators for D∥ and D⊥ given
by Eqs. (4),(6) as a function of time for different turbulence levels, and the result is shown in Fig. (3).

This figure illustrates the transition from the regime in which the particle orbit is weakly perturbed and memory of
the initial conditions is kept to the regime in which this memory is lost and the particle diffuse, ⟨∆x2⟩/∆t ≈constant.
The level of this plateau gives the magnitude of the diffusion coefficient; Fig. (3) also gives an idea of the uncertainty
in our measurement of diffusion coefficients. Finally, this figure also confirms the expected results D∥ ≫ D⊥ when
η ≪ 1 and D∥/D⊥ → 1 as η → 1. It should be pointed out that the initial value of the pitch angle cosine was

µ = 1/
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2 in all simulations; we have checked that our results are insensitive to this value as long as the turbulence
level η >∼ 0.1, as expected.

In Fig. (4), we show the behavior of the parallel diffusion coefficient as a function of rigidity for various turbulence
levels. The dotted lines correspond to the approximation of D∥ obtained from the calculation of τs using Eq. (4), and
the agreement appears excellent. This study does not confirm the existence of a Bohm scaling. More precisely, the
Bohm diffusion coefficient DB ∝ rLv only applies at η = 1 in the range 0.1 <∼ ρ <∼ 1, in agreement with the similar
conclusion for the scattering function. In all other cases the quasi-linear prediction is verified, i.e. D∥ ∝ ρ1/3 for
ρ < 1. We also found that a diffusion regime exists for rigidities greater than the upper bound of the resonance region,
i.e. ρ > 1, for as far as we have searched, or about 1.5 decade. In this regime ρ > 1, D∥ ∝ ρ7/3, for all values of η.
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This figure indeed reveals a clear trend. For all η, the ratio D⊥/D∥ is independent of rigidity for ρ < 1 , and
scales as ρ−2 for ρ > 1. A similar regime has been found by Giacalone & Jokipii [8] for ρ < 1, albeit with slightly
lower values than ours. This constancy is interpreted in the following as the signature of diffusion due to the chaotic
wandering of the guide center carrying field lines. The importance of the guiding center diffusion was pointed out by
Jokipii [5] as early as 1966 in order to correct the quasi-linear result; however this derivation does not apply to high
turbulence levels. Finally, the ratio D⊥/D∥ converges as expected to 1 for all ρ when η → 1. However it is interesting
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FIG. 3: Behavior of the averages ⟨∆x2⟩/∆t in units of rLc, as a function of the time interval ∆t in units of tL, for various
turbulence levels (ρ = 0.848), and for both the transverse displacement (lower thin line curves) and parallel displacement (upper
thick curves). One sees the transition from the weakly perturbed propagation regime ⟨∆x2⟩ ∝ ∆t2 to the diffusion regime
⟨∆x2⟩ ∝ ∆t, which appears here as a plateau. The transition duration depends on the turbulence level, and is of order of τs

the scattering time. The diffusion coefficients are given by the levels of the plateaux. Obviously, D∥ ≫ D⊥ for η < 1 and the
two meet in the limit η → 1, as expected.

Turning to the spatial diffusion coefficients, it is interesting to plot the statistical estimators for D∥ and D⊥ given
by Eqs. (4),(6) as a function of time for different turbulence levels, and the result is shown in Fig. (3).

This figure illustrates the transition from the regime in which the particle orbit is weakly perturbed and memory of
the initial conditions is kept to the regime in which this memory is lost and the particle diffuse, ⟨∆x2⟩/∆t ≈constant.
The level of this plateau gives the magnitude of the diffusion coefficient; Fig. (3) also gives an idea of the uncertainty
in our measurement of diffusion coefficients. Finally, this figure also confirms the expected results D∥ ≫ D⊥ when
η ≪ 1 and D∥/D⊥ → 1 as η → 1. It should be pointed out that the initial value of the pitch angle cosine was

µ = 1/
√

2 in all simulations; we have checked that our results are insensitive to this value as long as the turbulence
level η >∼ 0.1, as expected.

In Fig. (4), we show the behavior of the parallel diffusion coefficient as a function of rigidity for various turbulence
levels. The dotted lines correspond to the approximation of D∥ obtained from the calculation of τs using Eq. (4), and
the agreement appears excellent. This study does not confirm the existence of a Bohm scaling. More precisely, the
Bohm diffusion coefficient DB ∝ rLv only applies at η = 1 in the range 0.1 <∼ ρ <∼ 1, in agreement with the similar
conclusion for the scattering function. In all other cases the quasi-linear prediction is verified, i.e. D∥ ∝ ρ1/3 for
ρ < 1. We also found that a diffusion regime exists for rigidities greater than the upper bound of the resonance region,
i.e. ρ > 1, for as far as we have searched, or about 1.5 decade. In this regime ρ > 1, D∥ ∝ ρ7/3, for all values of η.

B. The issue of transverse diffusion

In Fig. (5), we plot the behavior of the transverse diffusion coefficient as a function of rigidity for various turbulence

levels. It is useful to plot also the quantity
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as shown in Fig. (6). Indeed, the noise of the simulation is
then reduced and this figure allows to compare directly the power law behaviors of D⊥ and D∥.

This figure indeed reveals a clear trend. For all η, the ratio D⊥/D∥ is independent of rigidity for ρ < 1 , and
scales as ρ−2 for ρ > 1. A similar regime has been found by Giacalone & Jokipii [8] for ρ < 1, albeit with slightly
lower values than ours. This constancy is interpreted in the following as the signature of diffusion due to the chaotic
wandering of the guide center carrying field lines. The importance of the guiding center diffusion was pointed out by
Jokipii [5] as early as 1966 in order to correct the quasi-linear result; however this derivation does not apply to high
turbulence levels. Finally, the ratio D⊥/D∥ converges as expected to 1 for all ρ when η → 1. However it is interesting
to note that even at η = 0.99, there remains the power law dependence for ρ > 1, D⊥/D∥ ∝ ρ−2.

We have found evidence for subdiffusive regimes ⟨∆x2⟩ ∝ ∆tm, with m < 1, at low enough rigidities ρ <∼ 10−2

⌘ =
(�B)2

(B + �B)2

�x / t

�x / t

1/2ballistic diffusive

isotropy



Numerical simulations

Casse, Lemoine, Pelletier 2000

implicit assumption done so far:
�B

B
⌧ 1 8

FIG. 3: Behavior of the averages ⟨∆x2⟩/∆t in units of rLc, as a function of the time interval ∆t in units of tL, for various
turbulence levels (ρ = 0.848), and for both the transverse displacement (lower thin line curves) and parallel displacement (upper
thick curves). One sees the transition from the weakly perturbed propagation regime ⟨∆x2⟩ ∝ ∆t2 to the diffusion regime
⟨∆x2⟩ ∝ ∆t, which appears here as a plateau. The transition duration depends on the turbulence level, and is of order of τs

the scattering time. The diffusion coefficients are given by the levels of the plateaux. Obviously, D∥ ≫ D⊥ for η < 1 and the
two meet in the limit η → 1, as expected.

Turning to the spatial diffusion coefficients, it is interesting to plot the statistical estimators for D∥ and D⊥ given
by Eqs. (4),(6) as a function of time for different turbulence levels, and the result is shown in Fig. (3).

This figure illustrates the transition from the regime in which the particle orbit is weakly perturbed and memory of
the initial conditions is kept to the regime in which this memory is lost and the particle diffuse, ⟨∆x2⟩/∆t ≈constant.
The level of this plateau gives the magnitude of the diffusion coefficient; Fig. (3) also gives an idea of the uncertainty
in our measurement of diffusion coefficients. Finally, this figure also confirms the expected results D∥ ≫ D⊥ when
η ≪ 1 and D∥/D⊥ → 1 as η → 1. It should be pointed out that the initial value of the pitch angle cosine was

µ = 1/
√

2 in all simulations; we have checked that our results are insensitive to this value as long as the turbulence
level η >∼ 0.1, as expected.

In Fig. (4), we show the behavior of the parallel diffusion coefficient as a function of rigidity for various turbulence
levels. The dotted lines correspond to the approximation of D∥ obtained from the calculation of τs using Eq. (4), and
the agreement appears excellent. This study does not confirm the existence of a Bohm scaling. More precisely, the
Bohm diffusion coefficient DB ∝ rLv only applies at η = 1 in the range 0.1 <∼ ρ <∼ 1, in agreement with the similar
conclusion for the scattering function. In all other cases the quasi-linear prediction is verified, i.e. D∥ ∝ ρ1/3 for
ρ < 1. We also found that a diffusion regime exists for rigidities greater than the upper bound of the resonance region,
i.e. ρ > 1, for as far as we have searched, or about 1.5 decade. In this regime ρ > 1, D∥ ∝ ρ7/3, for all values of η.

B. The issue of transverse diffusion

In Fig. (5), we plot the behavior of the transverse diffusion coefficient as a function of rigidity for various turbulence

levels. It is useful to plot also the quantity
(

D⊥/D∥
)1/2

as shown in Fig. (6). Indeed, the noise of the simulation is
then reduced and this figure allows to compare directly the power law behaviors of D⊥ and D∥.

This figure indeed reveals a clear trend. For all η, the ratio D⊥/D∥ is independent of rigidity for ρ < 1 , and
scales as ρ−2 for ρ > 1. A similar regime has been found by Giacalone & Jokipii [8] for ρ < 1, albeit with slightly
lower values than ours. This constancy is interpreted in the following as the signature of diffusion due to the chaotic
wandering of the guide center carrying field lines. The importance of the guiding center diffusion was pointed out by
Jokipii [5] as early as 1966 in order to correct the quasi-linear result; however this derivation does not apply to high
turbulence levels. Finally, the ratio D⊥/D∥ converges as expected to 1 for all ρ when η → 1. However it is interesting
to note that even at η = 0.99, there remains the power law dependence for ρ > 1, D⊥/D∥ ∝ ρ−2.

We have found evidence for subdiffusive regimes ⟨∆x2⟩ ∝ ∆tm, with m < 1, at low enough rigidities ρ <∼ 10−2
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assertion that the linear wave period that characterizes the
waves in a wave packet is comparable to the nonlin-Alfve! n

ear cascade time of that wave packet, i.e., vA/"
A

^ 1/tjM
.

Before considering slow waves in MHD turbulence, we
discuss two topics that are governed by the dynamics of

waves only : eddies and passive scalars.Alfve! n

2.2. Eddies
Because of their transverse polarization, waves areAlfve! n

responsible for the wandering of magnetic Ðeld lines. A
snapshot of wandering Ðeld lines is shown in Figure 1. Each
of these Ðeld lines passes through a localized region of size

in one plane transverse to the mean magnetic Ðeld. Awayj
Mfrom this plane the bundle of Ðeld lines diverges as a result

of the di†erential wandering of the individual lines. At a
second plane, the bundleÏs cross-sectional area has approx-
imately doubled. Critical balance implies that the distance
to this second plane is comparable to the parallel wave-
length that characterizes the bundle, As the bundle"

A
.

spreads, other Ðeld lines, not depicted, enter from its sides.
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no power here

Chandran 2000

CR-wave resonance condition

kzvz ⇡ ⌦g
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Figure 3. Diffusion coefficient as function of rigidity in different phases of the ISM: disk (left) and halo (right) for different values of MA.

calculated from:

Dµµ =
Ω2(1− µ2)

B2
0

∫

d3k RNLT
n (k)
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n (w)IF (k)

]

(4)
where w ≡ k⊥v⊥/Ω and Jn represents the Bessel func-

tion and we neglect the contribution from Alfvénic modes
because of their anisotropy as discussed above.
Unlike Alfvénic turbulence, magnetosonic modes are

subjected to various damping processes that could halt
the cascade. Scattering by fast modes is, therefore, influ-
enced by the medium properties, which determines the
damping. We consider here two different regions in the
Galaxy: the halo in which collisionless damping is domi-
nant and the disk in which viscous damping is in addition
taken into account. The cutoff scale kc due to damping
can be obtained by equating the cascading rate of fast
modes with the relevant damping rate. In case of colli-
sionless damping:

kcL =
4M4

Aγξ
2

πβ(1 − ξ2)2
exp
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βγξ2
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(5)

where MA ∼ δB/B is the Alfvénic Mach number, γ ≡
mp/me is the ratio between proton and electron mass,
β ≡ Pgas/Pmag is the ratio between thermal and mag-
netic pressure in the ISM. Note that the scale kc depends
on the wave pitch angle ξ, which makes the damping
anisotropic. In the disk the Coulomb collisional mean
free path is lmfp ∼ 6 × 1012 cm and β ∼ 0.1, and the
viscous damping cut-off scale can be evaluated as:

kcL = xc(1− ξ2)−2/3 (6)

where xc ≡ (6ρRm/vA)
2/3 is a combination of the fol-

lowing parameters: the Alfvén velocity vA, the magnetic
Reynold’s number Rm, the medium density ρ. For values

of these parameters typical of the warm ionized compo-
nent (WIM) of the ISM, e.g. in Ferriere (2001), xc is of
the order of 106.
Equation 4 can be specified for gyro-resonance (DG

µµ,
corresponding to n ̸= 0) and TTD (DT

µµ for n = 0).
Transit-time damping (TTD) arises from Landau type
interactions of particles with the compressive component
of magnetic fluctuations (i.e., the component parallel to
the mean magnetic field B0).
Finally, we can compute the spatial diffusion coefficient

by means of the following expression:

D ∼
1

3
λ||v =

1

8
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v(1 − µ2)2

DG
µµ +DT
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(7)

In Fig. 3 we show the diffusion coefficient as func-
tion of the particle rigidity (rL is the particle Larmor
radius) for different values of the level of turbulence ex-
pressed by MA. In the disk-like environment, for very
turbulent medium MA > 1, diffusion coefficient exhibits
different behaviors above and below the critical rigidity
rL/L ∼ 10−6 (which corresponds to a kinetic energy per
nucleon of ∼ 1 GeV assuming B ∼ 1µG and L = 10 pc)
and a dependence D ∼ E0.5 above the break, as required
to explain the observed high-energy B/C ratio. The ob-
served energy dependence is mainly due to the different
behavior with energy of the damping scales as first pro-
posed in Yan & Lazarian (2002). Diffusion in the halo
is a monotonic increasing function of the energy, given
by the fact that collisionless damping is always domi-
nant. Depending on the turbulence level the diffusion
coefficient can be approximated as ∼ E0.3−0.4 at higher
energies.
In general, larger magnetic turbulence corresponds to

more efficient diffusion through the collisionless damping
scale. In Evoli et al. (2012), a similar trend has been
proposed to account for the mismatching between the
inferred CR source distribution from the galaxy diffuse
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Propagation codes
 first attempts: D is a (broken) power law in rigidity, uniform throughout the Galaxy 

(disk+halo), isotropic… 
 other ingredients: distribution of sources, wind, CR reacceleration, gas and photon 

fields spatial distribution, cross sections, etc…  
 recent additions: D depends on position, accounts for possible anisotropic diffusion, 

magnetic field structure…
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Propagation codes
 first attempts: D is a (broken) power law in rigidity, uniform throughout the Galaxy 

(disk+halo), isotropic… 
 other ingredients: distribution of sources, wind, CR reacceleration, gas and photon 

fields spatial distribution, cross sections, etc…  
 recent additions: D depends on position, accounts for possible anisotropic diffusion, 

magnetic field structure…

even the most sophisticated approaches on the market have to rely onto quite 
drastic simplifying assumptions and significant astrophysical uncertainties

-> first attempts to introduce into propagation codes some results from realistic 
(with many caveats) theoretical studies (Evoli & Yan 2013) 
-> should we put more physics into propagation codes or keep them simple and use 
them to guide theoretical calculations? 
-> any claim based on the use of diffuse maps obtained from propagation codes 
should be very cautious 



Conclusions
 a lot of progresses in our understanding of the propagation of CRs in the turbulent 

ISM magnetic field 

still quite far from a reliable and realistic picture 

 most likely, CRs do not trap themselves in the galaxy via streaming instability 

(maybe at ~GeV energies, but definitely not at energies >> GeV, but there is no evidence 

for a distinction between high and low energy CRS…) 

 streaming instability might work in localized regions surrounding CR sources 

 Alfvenic cascade is anisotropic -> very inefficient scattering 

 magnetosonic waves? 

 problems with neutrals! density of neutral H must be quite small in order to avoid 

strong damping… -> diffusion in the halo? 

 …


