Propagation of cosmic rays in the turbulent interstellar magnetic field

Stefano Gabici
APC, Paris

Charged particle in uniform magnetic field

MHD waves in one slide

momentum eqn. $\varrho\left(\frac{\partial}{\partial t}+\mathbf{v} \nabla\right) \mathbf{v}=-\nabla P$

sound waves

particle motion unaffected along B

sound speed $->c_{s}^{2}=\gamma \frac{P}{\varrho}$

MHD waves in one slide

momentum eqn. $\varrho\left(\frac{\partial}{\partial t}+\mathbf{v} \nabla\right) \mathbf{v}=-\mathcal{S}+\frac{1}{c} \mathbf{j} \times \mathbf{B}=-\nabla \underset{\text { pressure }}{\left(\frac{\mathbf{B}}{8 \pi}\right)}+\frac{(\mathbf{B} \nabla) \mathbf{B}}{\underset{\text { tension }}{4 \pi}}$

sound waves

Alfven waves

particle motion unaffected along B

incompressible mode $\quad \delta \varrho=0$

Alfven speed -> $v_{A}^{2}=\frac{B^{2}}{4 \pi \varrho}$

MHD waves in one slide

momentum eqn. $\varrho\left(\frac{\partial}{\partial t}+\mathbf{v} \nabla\right) \mathbf{v}=-\nabla P+\frac{1}{c} \mathbf{j} \times \mathbf{B}=-\nabla\left(P+\frac{B^{2}}{8 \pi}\right)$

```
sound waves
```


Alfven waves

particle motion unaffected along B

sound speed $\rightarrow c_{s}^{2}=\gamma \frac{P}{\varrho}$
incompressible mode $\delta \varrho=0$

Alfven speed $\rightarrow v_{A}^{2}=\frac{B^{2}}{4 \pi \varrho}$

B
compressible mode
magnetosonic waves
magnetosonic speed $\rightarrow v_{m s}^{2}=c_{s}^{2}+v_{A}^{2}$

MHD waves in one slide

momentum eqn. $\varrho\left(\frac{\partial}{\partial t}+\mathbf{v} \nabla\right) \mathbf{v}=-\nabla P+\frac{1}{c} \mathbf{j} \times \mathbf{B}=-\nabla\left(P+\frac{B^{2}}{8 \pi}\right)$

sound waves

particle motion unaffected along B

sound speed $-c_{s}^{2}=\gamma \frac{P}{\varrho}$

Alfven waves

incompressible mode $\delta \varrho=0$

Alfven speed -> $v_{A}^{2}=\frac{B^{2}}{4 \pi \varrho}$

Resonant scattering with Alfven waves

Resonant scattering with Alfven waves

$$
\begin{aligned}
& \longrightarrow \vee \times B \text { (system.) }
\end{aligned}
$$

Resonant scattering with Alfven waves

circularly polarized

\odot	\downarrow	\times	\uparrow	\odot	v (gyr.)
\uparrow	\odot	\downarrow	\times	\uparrow	$B($ wave $)$

$v \times B$ (system.)

$$
v_{z} \gg V_{A}
$$

Resonant scattering with Alfven waves

$$
v_{z} \gg V_{A}
$$

-> "static" B-field
-> no E field
-> no work done
-> $E_{\text {before }}=E_{\text {after }}$

Resonance condition:
to stay in phase with the wave
left/right moving CRs
$\lambda=\frac{2 \pi}{k_{z}}=\left(\frac{2 \pi}{\Omega_{g}}\right) \underset{\substack{\text { particle } \\ \text { gyrofrequency }}}{\left(v_{z}-\nu_{A}\right)}$

Resonant scattering with Alfven waves

ZL6I |az+uaM molf •6!」

circularly polarized

$$
\odot
$$

\uparrow
\longrightarrow
$v \times B$ (system.)

Resonance condition:
$\lambda=\frac{2 \pi}{k_{z}}=\left(\frac{2 \pi}{\Omega_{g}}\right)\left(v_{\substack{\text { particle } \\ \text { gyrofrequency }}}^{\left(v_{z}-\hbar_{\mu}\right)}\right.$

$$
v_{z} \gg V_{A}
$$

-> "static" B-field
-> no E field
-> no work done
$\rightarrow E_{\text {before }}=E_{\text {after }}$

pitch angle scattering
left/right moving CRs

Resonant scattering with Alfven waves

Diffusion in pitch angle

$$
\delta \vartheta \approx \pm \frac{\delta B}{B} \Longleftarrow{ }_{B}^{\text {angle between } \mathrm{B}+\mathrm{dB} \text { and } \mathrm{B}} \stackrel{B+\mathrm{dB}}{\mathrm{~B}} \mathrm{~dB}
$$

Diffusion in pitch angle

Diffusion in pitch angle

change in pitch angle after one scattering

$\left\langle(\Delta \vartheta)^{2}\right\rangle$

Diffusion in pitch angle

change in pitch angle after one scattering

$$
\left\langle(\Delta \vartheta)^{2}\right\rangle=\Sigma\left\langle(\delta \vartheta)^{2}\right\rangle
$$

train of waves

Diffusion in pitch angle

change in pitch angle after one scattering

Diffusion in pitch angle

Diffusion in pitch angle

change in pitch angle after one scattering $\longrightarrow \delta \vartheta \approx \pm \frac{\delta B}{B}$ angle between $B+d B$ and B

$$
D_{\vartheta}=\frac{\left\langle(\Delta \vartheta)^{2}\right\rangle}{2 t}=\frac{\pi}{8} \Omega_{g}\left\langle\left(\frac{\delta B}{B}\right)^{2}\right\rangle
$$

From pitch angle to space diffusion

Particle loses memory of initial pitch angle after a time:

$$
\tau_{s} \approx \frac{1}{D_{\vartheta}} \approx\left(\Omega_{g}\left\langle\left(\frac{\delta B}{B}\right)^{2}\right\rangle\right)^{-1}
$$

From pitch angle to space diffusion

Particle loses memory of initial pitch angle after a time:

$$
\tau_{s} \approx \frac{1}{D_{\vartheta}} \approx\left(\Omega_{g}\left\langle\left(\frac{\delta B}{B}\right)^{2}\right\rangle\right)^{-1}
$$

scattering time for space
diffusion (along B-field)

From pitch angle to space diffusion

Particle loses memory of initial pitch angle after a time:

scattering time for space
diffusion (along B-field)
1/E

From pitch angle to space diffusion

Particle loses memory of initial pitch angle after a time:
scattering time for space
diffusion (along B-field)

$$
I\left(k_{\text {res }}\right) k_{\text {res }} \sim k_{\text {res }}-s+1
$$

From pitch angle to space diffusion

Particle loses memory of initial pitch angle after a time:

$$
D_{\|} \approx v^{2} \tau_{s} \propto E^{2-s}
$$

From pitch angle to space diffusion

Particle loses memory of initial pitch angle after a time:

$$
D_{\|} \approx v^{2} \tau_{s} \propto E^{2-s}
$$

$$
\text { e.g. Kolmogorov } \rightarrow \text { s }=5 / 3 \rightarrow \quad D \propto E^{1 / 3}
$$

From pitch angle to space diffusion

Particle loses memory of initial pitch angle after a time:

$$
D_{\|} \approx v^{2} \tau_{s} \propto E^{2-s}
$$

$$
\text { e.g. Kolmogorov } \rightarrow s=5 / 3 \rightarrow D \propto E^{1 / 3}
$$

Perpendicular diffusion

$$
\begin{gathered}
D_{\|}=\frac{1}{3} c^{2} \tau_{s} \approx \frac{1}{3} \frac{c^{2}}{\Omega_{g}} \mathcal{F}(k)^{-1}=\frac{1}{3} R_{L} c \mathcal{F}(k)^{-1} \\
{\left[I\left(k_{\text {res }}\right) k_{\text {res }}\right] / B^{2}}
\end{gathered}
$$

Perpendicular diffusion

e.g. Drury 1983

$$
\left.D_{\|}=\frac{1}{3} c^{2} \tau_{s} \approx \frac{1}{3} \frac{c^{2}}{\Omega_{g}} \mathcal{F}(k)^{-1}=\frac{1}{3} R_{L} c\right) \mathcal{F}(k)^{-1}
$$

Perpendicular diffusion

$$
\begin{aligned}
& D_{\|}=\frac{1}{3} c^{2} \tau_{s}\left.\approx \frac{1}{3} \frac{c^{2}}{\Omega_{g}} \mathcal{F}(k)^{-1}=\frac{1}{3} R_{L} c\right) \mathcal{F}(k)^{-1} \\
& {\left[I\left(k_{\text {res }}\right) k_{\text {res }}\right] / B^{2} \quad \text { Bohm diffusion coefficient } D_{B} }
\end{aligned}
$$

perpendicular displacement after time τ_{s}

$$
\lambda_{\perp} \approx \sqrt{N}\left(\delta \vartheta R_{L}\right)
$$

random walk
displacement after one scattering

Perpendicular diffusion

$$
\begin{aligned}
& D_{\|}=\frac{1}{3} c^{2} \tau_{s}\left.\approx \frac{1}{3} \frac{c^{2}}{\Omega_{g}} \mathcal{F}(k)^{-1}=\frac{1}{3} R_{L} c\right) \mathcal{F}(k)^{-1} \\
& {\left[I\left(k_{\text {res }}\right) \mathrm{k}_{\text {res }}\right] / \mathrm{B}^{2} \quad \text { Bohm diffusion coefficient } \mathrm{D}_{B} }
\end{aligned}
$$

perpendicular displacement after time τ_{s}
this is ~ 1
random walk
displacement after one scattering

Perpendicular diffusion

$$
\begin{aligned}
& D_{\|}=\frac{1}{3} c^{2} \tau_{s}\left.\approx \frac{1}{3} \frac{c^{2}}{\Omega_{g}} \mathcal{F}(k)^{-1}=\frac{1}{3} R_{L} c\right) \mathcal{F}(k)^{-1} \\
& {\left[I\left(\mathrm{k}_{\text {res }}\right) \mathrm{k}_{\text {res }}\right] / \mathrm{B}^{2} \quad \text { Bohm diffusion co } }
\end{aligned}
$$

perpendicular displacement after time τ_{s}
this is ~1
random walk
$D_{\perp} \approx \frac{1}{3} \frac{\lambda_{\perp}^{2}}{\tau_{s}} \approx \frac{1}{3} R_{L} c \mathcal{F}(k) \propto E^{s}$

Perpendicular diffusion

e.g. Drury 1983

$$
\begin{aligned}
& D_{\|}=\frac{1}{3} c^{2} \tau_{s}\left.\approx \frac{1}{3} \frac{c^{2}}{\Omega_{g}} \mathcal{F}(k)^{-1}=\frac{1}{3} R_{L} c\right) \mathcal{F}(k)^{-1} \\
& {\left[I\left(\mathrm{k}_{\text {res }}\right) \mathrm{k}_{\text {res }}\right] / \mathrm{B}^{2} \quad \text { Bohr diffusion co } }
\end{aligned}
$$

perpendicular displacement after time τ_{s}
this is ~ 1
random walk
$D_{\perp} \approx \frac{1}{3} \frac{\lambda_{\perp}^{2}}{\tau_{s}} \approx \frac{1}{3} R_{L} c \mathcal{F}(k) \propto E^{s} \ D_{\|} D_{\perp}=\left(\frac{1}{3} R_{L} c\right)^{2}=D_{B}^{2}$
Bohm -> minimum possible diffusion coefficient, totally random field on scale R_{L}

Diffusion of magnetic field lines

turbulent velocity field - t turbulent B field - s random walk of lines of force

Jokipii \& Parker 1969

Diffusion of magnetic field lines

turbulent velocity field -> turbulent B field -> random walk of lines of force

diffusion coefficient of field lines \downarrow
$(\Delta R)^{2} \approx 2 D_{m} \Delta z$
$D_{m}=\frac{b^{2} \lambda_{B}}{4} \leftarrow \begin{gathered}\text { coherence } \\ \text { length }\end{gathered}$

Jokipii \& Parker 1969

Diffusion of magnetic field lines

turbulent velocity field $->$ turbulent B field $->$ random walk of lines of force

Jokipii \& Parker 1969
diffusion coefficient of field lines
$(\Delta R)^{2} \approx 2 D_{m} \Delta z$
$D_{m}=\frac{b^{2} \lambda_{B}}{4} \underset{\substack{\text { turbulent field } \\ \text { coherence } \\ \text { length }}}{\substack{\text { th } \\ \hline}}$

assumption: no cross field diffusion

diffusion along $B \rightarrow(\Delta z)^{2}=2 D_{\|} t$

Compound diffusion

evolution in z of a coherent patch of B-field lines

Compound diffusion

evolution in z of a coherent patch of B-field lines

chaotic behavior of B : exponential separation of adiacent field lines

$$
l(z) \sim \lambda_{B} e^{\left(\frac{z}{\lambda_{L}}\right)}
$$

Lyapunov index $\rightarrow \lambda_{L}=\lambda_{B} / b^{2}$

Compound diffusion

evolution in z of a coherent patch of B-field lines

chaotic behavior of B : exponential separation of adiacent field lines

$$
l(z) \sim \lambda_{B} e^{\left(\frac{z}{\lambda_{L}}\right)}
$$

Lyapunov index $\rightarrow \lambda_{L}=\lambda_{B} / b^{2}$
constant $B \rightarrow$ constant area $\xrightarrow{ }$

Compound diffusion

Rechester \& Rosenbluth 1978

Compound diffusion

evolution in z of a coherent patch of B-field lines

Compound diffusion

evolution in z of a coherent patch of B-field lines

chaotic behavior of B : exponential separation of adiacent field lines

$$
l(z) \sim \lambda_{B} e^{\left(\frac{z}{\lambda_{L}}\right)}
$$

Lyapunov index $\rightarrow \lambda_{L}=\lambda_{B} / b^{2}$
constant $B \rightarrow$ constant area $\xrightarrow{ }$

Compound diffusion

evolution in z of a coherent patch of B-field lines

chaotic behavior of B : exponential separation of adiacent field lines

$$
l(z) \sim \lambda_{B} e^{\left(\frac{z}{\lambda_{L}}\right)}
$$

Lyapunov index $\rightarrow \lambda_{L}=\lambda_{B} / b^{2}$
constant $B \rightarrow$ constant area $\longrightarrow \delta(z) \sim \lambda_{B} e^{-\left(\frac{z}{\lambda_{L}}\right)}$

$$
z\left(t_{d}\right)=\left(2 D_{\|} t_{d}\right)^{1 / 2}
$$

Compound diffusion

evolution in z of a coherent patch of B-field lines

chaotic behavior of B : exponential separation of adiacent field lines

$$
l(z) \sim \lambda_{B} e^{\left(\frac{z}{\lambda_{L}}\right)}
$$

Lyapunov index $\rightarrow \lambda_{L}=\lambda_{B} / b^{2}$
constant B-> constant area $\longrightarrow \delta(z) \sim \lambda_{B} e^{-\left(\frac{z}{\lambda_{L}}\right)}$
decorrelation time $\rightarrow \delta\left(z\left(t_{d}\right)\right)=\left(4 D_{\perp} t_{d}\right)^{1 / 2}$

$$
z\left(t_{d}\right)=\left(2 D_{\|} t_{d}\right)^{1 / 2}
$$

random walk across B with mean free path -> L_{\perp}

Compound diffusion

evolution in z of a coherent patch of B-field lines

chaotic behavior of B : exponential separation of adiacent field lines

$$
l(z) \sim \lambda_{B} e^{\left(\frac{z}{\lambda_{L}}\right)}
$$

Lyapunov index -> $\lambda_{L}=\lambda_{B} / b^{2}$
constant $\mathrm{B} \rightarrow$ constant area $\longrightarrow \delta(z) \sim \lambda_{B} e^{-\left(\frac{z}{\lambda_{L}}\right)}$
decorrelation time $\rightarrow \delta\left(z\left(t_{d}\right)\right)=\left(4 D_{\perp} t_{d}\right)^{1 / 2}$

$$
z\left(t_{d}\right)=\left(2 D_{\|} t_{d}\right)^{1 / 2}
$$

random walk across B with mean free path -> L_{\perp}

$$
\text { perpendicular diffusion } \rightarrow \quad \kappa_{\perp} \approx \frac{L_{\perp}^{2}}{t_{d}}
$$

Numerical simulations

implicit assumption done so far: $\quad \frac{\delta B}{B} \ll 1$

Casse, Lemoine, Pelletier 2000

Numerical simulations

implicit assumption done so far: $\quad \frac{\delta B}{B} \ll 1$

Casse, Lemoine, Pelletier 2000

Numerical simulations

implicit assumption done so far: $\quad \frac{\delta B}{B} \ll 1$

Casse, Lemoine, Pelletier 2000

Numerical simulations

implicit assumption done so far: $\quad \frac{\delta B}{B} \ll 1$

Casse, Lemoine, Pelletier 2000

Numerical simulations

implicit assumption done so far: $\quad \frac{\delta B}{B} \ll 1$

$$
D_{\perp} \approx \eta^{2.3} D_{\|}
$$

Casse, Lemoine, Pelletier 2000

Alfven waves from streaming instability

Naive treatment

Kulsrud's book

CR streaming velocity U_{D}

Alfven waves from streaming instability

Naive treatment

Kulsrud's book

CR streaming velocity U_{D}

\sim

Alfven waves from streaming instability

Naive treatment

CR streaming velocity U_{D}

momentum -> waves

\sim

Kulsrud's book

$\delta B / B$ increases

Alfven waves from streaming instability

Naive treatment

CRs are isotropized in the frame of waves

$$
\frac{d P_{C R}}{d t}=\frac{n_{C R} m\left(v_{D}-v_{A}\right)}{\tau}
$$

$$
\tau \approx \frac{1}{D_{\vartheta}}
$$

Alfven waves from streaming instability

$$
\begin{aligned}
\frac{d P_{C R}}{d t} & =\frac{n_{C R} m\left(v_{D}-v_{A}\right)}{\tau}=2 \Gamma_{C R} \frac{(\delta B)^{2}}{8 \pi v_{A}} \\
m & =\gamma M
\end{aligned}
$$

$$
\Gamma_{C R} \sim \frac{n_{C R}}{n_{g a s}}\left(\frac{v_{D}-v_{A}}{v_{A}}\right) \Omega_{0}
$$

$$
\Gamma_{C R} \approx \underset{\substack{\lambda_{n} \\ 1 \mathrm{~cm}^{-3}}}{\substack{10^{-10} \mathrm{~cm}^{-3} \\ n_{C R}}} \Omega_{0} \approx 10^{-4} \mathrm{yr}^{-1}
$$

much shorter than the CR lifetime !!!

Problem \#1: neutrals

Ion-neutral damping
$\Gamma_{i-n} \approx 8.4 \times 10^{-9}\left(\frac{n_{n}}{\mathrm{~cm}^{-3}}\right)\left(\frac{T}{10^{4} \mathrm{~K}}\right)^{0.4} \mathrm{yr}^{-1} \approx(40 \ldots 250)^{-1}\left(\frac{n_{n}}{0.1 \mathrm{~cm}^{-3}}\right) \mathrm{yr}^{-1}$

IL6I Kysudsaว \& pnus|ny

Problem \#1: neutrals

Ion-neutral damping
$\left.\Gamma_{i-n} \approx 8.4 \times 10^{-9}\left(\frac{n_{n}}{\mathrm{~cm}^{-3}}\right)\left(\frac{T}{10^{4} \mathrm{~K}}\right)^{0.4} \mathrm{yr}^{-1} \approx(40 \ldots 250)^{-1}\right)\left(\frac{n_{n}}{0.1 \mathrm{~cm}^{-3}}\right) \mathrm{yr}^{-1}$

Problem \#1: neutrals

Ion-neutral damping

$\left.\Gamma_{i-n} \approx 8.4 \times 10^{-9}\left(\frac{n_{n}}{\mathrm{~cm}^{-3}}\right)\left(\frac{T}{10^{4} \mathrm{~K}}\right)^{0.4} \mathrm{yr}^{-1} \approx(40 \ldots 250)^{-1}\right)\left(\frac{n_{n}}{0.1 \mathrm{~cm}^{-3}}\right) \mathrm{yr}^{-1}$
@ ~1 GeV -> very effective confinement
@ >>1 GeV \rightarrow NO confinement!

Problem \#1: neutrals

Ion-neutral damping

$\left.\Gamma_{i-n} \approx 8.4 \times 10^{-9}\left(\frac{n_{n}}{\mathrm{~cm}^{-3}}\right)\left(\frac{T}{10^{4} \mathrm{~K}}\right)^{0.4} \mathrm{yr}^{-1} \approx(40 \ldots 250)^{-1}\right)\left(\frac{n_{n}}{0.1 \mathrm{~cm}^{-3}}\right) \mathrm{yr}^{-1}$
@ ~1 GeV \rightarrow very effective confinement

$$
\text { @ >>1 GeV } \rightarrow \text { NO confinement! }
$$

2 way-outs:

1) go to a fully ionized region (Galactic halo?)
2) external source of turbulence (other than CRs)

Problem \#2: anisotropy

Way-out -> "external" Alfvenic turbulence

Problem \#2: anisotropy

Way-out -> "external" Alfvenic turbulence
Goldreich\&Sridhar $(1995,1997)$-> strong Alfvenic turbulence is anisotropic!

Problem \#2: anisotropy

Way-out -> "external" Alfvenic turbulence
Goldreich\&Sridhar $(1995,1997)$-> strong Alfvenic turbulence is anisotropic!

interaction of wave packets
moving in opposite directions

Problem \#2: anisotropy

Way-out -> "external" Alfvenic turbulence
Goldreich\&Sridhar $(1995,1997)$-> strong Alfvenic turbulence is anisotropic!

critical balance

$$
\omega=v_{A} k_{\|} \sim \frac{v_{A}}{\Lambda_{\|}}
$$

interaction of wave packets moving in opposite directions

Problem \#2: anisotropy

Way-out -> "external" Alfvenic turbulence
Goldreich\&Sridhar $(1995,1997)$-> strong Alfvenic turbulence is anisotropic!

critical balance

$$
\omega=v_{A} k_{\|} \sim \frac{v_{A}}{\Lambda_{\|}} \approx \frac{\delta v_{\lambda_{\perp}}}{\lambda_{\text {perpe period })^{-1}}^{\substack{x}}}
$$

interaction of wave packets moving in opposite directions

Problem \#2: anisotropy

Way-out -> "external" Alfvenic turbulence
Goldreich\&Sridhar $(1995,1997)$-> strong Alfvenic turbulence is anisotropic!

interaction of wave packets moving in opposite directions
critical balance
$\omega=v_{A} k_{\|} \sim \underset{\text { (wave period) }^{-1}}{\sim} \underset{\Lambda_{\|}}{v_{A}} \approx \frac{\delta v_{\lambda_{\perp}}}{\lambda_{\text {perp }}}$
constant energy cascade rate (Kolmogorov)

$$
\epsilon \sim \frac{(\delta v)^{2}}{t_{c}} \sim \frac{\left(\delta v_{\lambda_{\perp}}\right)^{3}}{\lambda_{\perp}} \equiv \frac{v_{A}^{3}}{L_{i n j}}
$$

Problem \#2: anisotropy

putting things together:

$$
\begin{aligned}
\delta v_{\lambda_{\|}} & =\left(\frac{\lambda_{\perp}}{L_{i n j}}\right)^{1 / 3} \\
\Lambda_{\|} & =\lambda_{\perp}^{2 / 3} L_{i n j}^{1 / 3}
\end{aligned}
$$

same relations hold for δB

Problem \#2: anisotropy

putting things together:

$$
\left.\begin{array}{rl}
\delta v_{\lambda_{\|}} & =\left(\frac{\lambda_{\perp}}{L_{i n j}}\right)^{1 / 3} \\
\Lambda_{\|} & =\lambda_{\perp}^{2 / 3} L_{i n j}^{1 / 3}
\end{array}\right\rangle \begin{gathered}
\begin{array}{c}
\text { turbulence becomes more and more } \\
\text { anisotropic as we move into the cascade }
\end{array} \\
\end{gathered}
$$

same relations hold for δB

Problem \#2: anisotropy

putting things together:

$$
\begin{aligned}
\delta v_{\lambda_{\|}} & =\left(\frac{\lambda_{\perp}}{L_{i n j}}\right)^{1 / 3} \\
\Lambda_{\|} & =\lambda_{\perp}^{2 / 3} L_{i n j}^{1 / 3}
\end{aligned}
$$

turbulence becomes more and more anisotropic as we move into the cascade
same relations hold for δB

Problem \#2: anisotropy

putting things together:

$$
\left.\delta v_{\lambda_{\|}}=\left(\frac{\lambda_{\perp}}{L_{i n j}}\right)^{1 / 3} \square\right\rangle
$$

turbulence becomes more and more anisotropic as we move into the cascade
same relations hold for δB

CR-wave resonance condition
no power here

$$
k_{z} v_{z} \approx \Omega_{g}
$$

scattering is very ineffective!

Problem \#3: turbulent damping

Way-out -> fully ionized medium

Problem \#3: turbulent damping

Way-out -> fully ionized medium
Parallel Alfven waves generated by CR streaming instability interact with (mostly) perpendicular background Alfven waves -> introduction of perpendicular component to the CR-generated waves -> waves are integrated within the cascade
-> damping mechanism

Problem \#3: turbulent damping

Way-out -> fully ionized medium
Parallel Alfven waves generated by CR streaming instability interact with (mostly) perpendicular background Alfven waves -> introduction of perpendicular component to the CR-generated waves -> waves are integrated within the cascade -> damping mechanism

It can be shown that:
$\Gamma_{d} \sim\left(\frac{\epsilon}{R_{L} v_{A}}\right)^{\frac{1}{2}} \sim(600)^{-1}\left(\frac{\epsilon}{0.06 \mathrm{erg} / \mathrm{s} / \mathrm{g}}\right)^{\frac{1}{2}}\left(\frac{v_{A}}{200 \mathrm{~km} / \mathrm{s}}\right)^{-\frac{1}{2}}\left(\frac{E}{\mathrm{GeV}}\right)^{-\frac{1}{2}} \mathrm{~s}^{-1}$

Problem \#3: turbulent damping

Way-out -> fully ionized medium
Parallel Alfven waves generated by CR streaming instability interact with (mostly) perpendicular background Alfven waves -> introduction of perpendicular component to the CR-generated waves -> waves are integrated within the cascade -> damping mechanism

It can be shown that:
$\Gamma_{d} \sim\left(\frac{\epsilon}{R_{L} v_{A}}\right)^{\frac{1}{2}} \sim(600)^{-1}\left(\frac{\epsilon}{0.06 \mathrm{erg} / \mathrm{s} / \mathrm{g}}\right)^{\frac{1}{2}}\left(\frac{v_{A}}{200 \mathrm{~km} / \mathrm{s}}\right)^{-\frac{1}{2}}\left(\frac{E}{\mathrm{GeV}}\right)^{-\frac{1}{2}} \mathrm{~s}^{-1}$
streaming instability does not work for $E \gtrsim 100 \mathrm{GeV}$

Farmer \& Goldreich 2004

Problem \#3: turbulent damping

Way-out -> fully ionized medium
Parallel Alfven waves generated by CR streaming instability interact with (mostly) perpendicular background Alfven waves -> introduction of perpendicular component to the CR-generated waves -> waves are integrated within the cascade -> damping mechanism

It can be shown that:

Magnetosonic waves

Alfven waves $\quad \omega=k_{z} V_{A}$
magnetosonic $\mathbf{w} . \quad \omega=k v_{ \pm}$

incompressible

$$
v_{ \pm}=\left\{\frac{1}{2}\left[v_{A}^{2}+c_{s}^{2} \underset{\kappa_{\text {slow mode }}^{ \pm}}{(\text {fast mode }} \sqrt{\left(v_{A}^{2}+c_{s}^{2}\right)^{2}-4 v_{a}^{2} c_{s}^{2} \cos ^{2} \vartheta}\right]\right\}^{1 / 2}
$$

Magnetosonic waves

Alfven waves $\quad \omega=k_{z} V_{A}$

incompressible

magnetosonic $w . \quad \omega=k v_{ \pm}$
compressible

$$
v_{ \pm}=\left\{\frac{1}{2}\left[v_{A}^{2}+c_{s}^{2} \underset{\kappa_{\text {slow mode }}}{\left.\stackrel{\swarrow}{\left(v_{S}^{2}+c^{2}\right.}\right)^{2}-4 v_{a}^{2} c_{s}^{2} \cos ^{2} \vartheta}\right]\right\}^{1 / 2}
$$

> high beta-plasma $$
c_{s} \gg v_{a}
$$ N

$$
\omega=k_{z} v_{a}
$$

low beta-plasma $c_{s} \ll v_{a}$
$\omega=k v_{a}$
$\omega=k_{z} c_{s}$

Magnetosonic waves

Alfven waves $\quad \omega=k_{z} V_{A}$

incompressible

magnetosonic $w . \quad \omega=k v_{ \pm}$

compressible

$$
v_{ \pm}=\left\{\frac{1}{2}\left[v_{A}^{2}+c_{s}^{2} \underset{\kappa}{ \pm} \sqrt{\left(v_{\text {slow mode }}^{2}+c_{s}^{2}\right)^{2}-4 v_{a}^{2} c_{s}^{2} \cos ^{2} \vartheta}\right]\right\}^{1 / 2}
$$

$$
\begin{gathered}
\text { high beta-plasma } \\
c_{s} \gg v_{a}
\end{gathered}
$$

$$
\omega=k_{z} v_{a}
$$

> low beta-plasma

$$
c_{s} \ll v_{a}
$$

$\omega=k v_{a}$
$\omega=k_{z} c_{s}$
cascade
isotropic
anisotropic
e.g. Cho \& Lazarian 2003

Magnetosonic waves: fast modes

Yan \& Lazarian 2002, 2004, 2008
resonance condition $\quad \omega-k_{z} v_{z}-n \Omega_{g}=0$

$$
\begin{aligned}
& n= \pm 1, \pm 2, \pm 3 \ldots \quad \text { gyroresonance } \\
& n=0 \rightarrow \frac{\omega}{k_{z}}=v_{z} \quad \text { transit time damping (or resonant mirror interaction) }
\end{aligned}
$$

Magnetosonic waves：fast modes

Yan \＆Lazarian 2002，2004， 2008 resonance condition $\quad \omega-k_{z} v_{z}-n \Omega_{g}=0$
$n= \pm 1, \pm 2, \pm 3 \ldots \quad$ gyroresonance
$n=0 \rightarrow \frac{\omega}{k_{z}}=v_{z} \quad$ transit time damping（or resonant mirror interaction）

を102 UD人 8 ！！© ヨ

Magnetosonic waves：fast modes

Yan \＆Lazarian 2002，2004， 2008 resonance condition $\omega-k_{z} v_{z}-n \Omega_{g}=0$
$n= \pm 1, \pm 2, \pm 3 \ldots \quad$ gyroresonance
$n=0 \rightarrow \frac{\omega}{k_{z}}=v_{z} \quad$ transit time damping（or resonant mirror interaction）

をIOZ UD人 8 ！｜0＾ヨ

Propagation codes

IV first attempts: D is a (broken) power law in rigidity, uniform throughout the Galaxy (disk+halo), isotropic...
IV other ingredients: distribution of sources, wind, CR reacceleration, gas and photon fields spatial distribution, cross sections, etc...
I recent additions: D depends on position, accounts for possible anisotropic diffusion, magnetic field structure...

Propagation codes

IV first attempts: D is a (broken) power law in rigidity, uniform throughout the Galaxy (disk+halo), isotropic...
IV other ingredients: distribution of sources, wind, CR reacceleration, gas and photon fields spatial distribution, cross sections, etc...
I recent additions: D depends on position, accounts for possible anisotropic diffusion, magnetic field structure...
even the most sophisticated approaches on the market have to rely onto quite drastic simplifying assumptions and significant astrophysical uncertainties

Propagation codes

I- first attempts: D is a (broken) power law in rigidity, uniform throughout the Galaxy (disk+halo), isotropic...
V other ingredients: distribution of sources, wind, CR reacceleration, gas and photon fields spatial distribution, cross sections, etc...

- recent additions: D depends on position, accounts for possible anisotropic diffusion, magnetic field structure...
even the most sophisticated approaches on the market have to rely onto quite drastic simplifying assumptions and significant astrophysical uncertainties
-> first attempts to introduce into propagation codes some results from realistic (with many caveats) theoretical studies (Evoli \& Yan 2013)
-> should we put more physics into propagation codes or keep them simple and use them to guide theoretical calculations?
-> any claim based on the use of diffuse maps obtained from propagation codes should be very cautious

Conclusions

IV a lot of progresses in our understanding of the propagation of $C R s$ in the turbulent ISM magnetic field

IV still quite far from a reliable and realistic picture
IV most likely, CRs do not trap themselves in the galaxy via streaming instability (maybe at $\sim \mathrm{GeV}$ energies, but definitely not at energies > GeV, but there is no evidence for a distinction between high and low energy CRS...)
IV streaming instability might work in localized regions surrounding CR sources
I] Alfvenic cascade is anisotropic \rightarrow very inefficient scattering
I magnetosonic waves?
If problems with neutrals! density of neutral H must be quite small in order to avoid strong damping... -> diffusion in the halo?

V ...

