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What do we know about ion energy transfer in a plasma ?

* Collisional: “Stopping power”

 Collisionless: wave creation and instabilities
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What do we know about ion energy transfer in a plasma ?

* Collisional: “Stopping power”
 Collisionless: wave creation and instabilities
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Why do we want to know about collisional
energy transfer (stopping power) ?

Collisional lon interaction

with a plasma
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Measurements of
lon stopping
power in a plasma
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Stopping powerin Solids and
Gases are widely available —
PSTAR & SRIM

Interest picked up with laser
based Inertial Confinement
Fusion (ICF)
— Heavy lon Fusion, Proton Fast
lgnition, etc.
— All simulations rely on
unverified theoretical models

Stellar physics

— Re-heating due to fusion
products

hydrodynamically—nanosecondtimescale

Ideally, one would need a picosecond beam since the plasmais evolving



lon stopping power in with a plasma
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First experiments performed at ELFIE and Titan/JLF

CPABeam
TOPVIEW .
Gas jet
280 b
Monochromatic ars Proton Spectrometer
proton beam
p+ p+
- —)
H gas Magnagtic

| Selecthr
Long pulse beam

45 cm




dE/dx (MeV cm2/g)
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Proton stopping through cold gas
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Proton stopping through fully ionized gas - reduced

stoppingregime

30 J long pulse beam
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What’s next ?

Proton stopping power in Hydrogen
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Why do we want to know about collisionless

energy transfer?
- * |ICF-walldesign of the
Collisionless lon
interaction with a plasma eXperi mental chamber
Experimental
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o | TheoryZ Measrementsin * Space weather
energy transfer
* Precursorto Collisionless

shocks

Very littleis verified in the field of ion transport since tests need high density
beams

High density beams are needed to triggerinstabilities quickly

Plasma machines have been usedin the past, but beam densitiesare very
low




Collisionless interactions between electron and ion beams
with a plasma

* High density electron and proton beams with MeV energy, so
instabilities can be easily triggered
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What are the simulations telling us

time (Tace) > time (tTacc)
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Energy transferred can vary by more than 50% dependingon the model used




What are the simulations telling us

TS instability TS instability
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Need: Multiple laser beams and high energy ion
beams with high particle density

lon beam interaction with a hot plasma

Vp >> Vi,
Proton probe for EM fields
Characterization A Thomson
through X-ray scattering for plasma

and visible emissivity

temperature

lon Beam: Ein

Counter-streaming ion beams
Vb1 = ~Vb2

Auxiliary proton
probe for EM field
measurement
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The Titan Laser in Split Configuration Provides

Double TNSA beam Production Titan Laser

in Split Configuration
bedm -- 700 fs




Apollon with the multiple high intensity beams
is the ideal facility to perform experiments

 Experimental verification ofthe predicted stopping power of
protonsina plasma

e Study collisionlession energy transfer mechanismto a plasma
through instabilitieson the way to studying collisionless
shocksin the future

* Apollon offers
— Multiple beams
— High power/intensity = high density/energy ionbeams
— Versatile experimental chamber
— High rep-rate



