UNIVERSITY of Jork

Experimental and Theoretical Studies of High-Field QED Effects in Laser-Plasma Interactions

Christopher D Murphy and Christopher P Ridgers York Plasma Institute Also Visiting Scientist at STFC - Central Laser Facility

Apollon FIRE Meeting 12th February 2016

Current Collaborators

STFC Central Laser Facility

• University of York

 Chris Murphy, Chris Ridgers, Chris Baird

Imperial College London

- Stuart Mangles, Jason Cole, Jonathan Wood, Elias Gerstmayr, Kristian Poder
- University of Strathclyde
 - Paul McKenna, Ross Gray, Matthew Duff, Robbie Wilson

University of Michigan

- Alec Thomas, Keegan Behm
- Central Laser Facility
 - Dan Symes, James Green, Nicola Booth, Dean Rusby

Chalmers University of Technology, Gothenburg

 Tom Blackburn, Anton Ilderton, Mattias Marklund, Chris Harvey

Continuing and FutureCollaborators

UNIVERSITY of Jork

Central Laser Facility

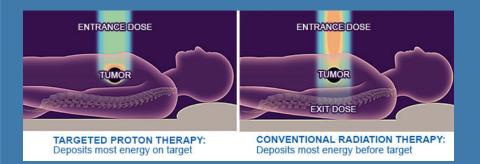
ANCE IS29

MICHIGAN University of Strathclyde Glasgow

UNIVERSITY OF

University of York

- Chris Murphy, Chris Ridgers, Chris Baird
- Imperial College London
 - Stuart Mangles, Jason Cole, Jonathan Wood, Elias Gerstmayr, Kristian Poder
- University of Strathclyde
 - Paul McKenna, Ross Gray, Matthew Duff, Robbie Wilson
- University of Michigan


•

- Alec Thomas, Keegan Behm
- Central Laser Facility
 - Dan Symes, James Green, Nicola Booth, Dean Rusby
 - Chalmers University of Technology, Gothenburg
 - Tom Blackburn, Anton Ilderton, Mattias Marklund
- ELI-NP and STFC Rutherford Appleton Laboratory
 - Edmond Turcu
 - Queens University Belfast
 - Gianluca Sarri, Matt Zepf, Guillermo Marrero Samarin
 Helmholtz Institute Jena
 University of Warwick
 - Tony Arbor, Chris Brady MPK
 - John Kirk
 - Apollon?
- LULI?
- LOA?

Anyone else interested?

Ultimate Goals <u>Applications</u>

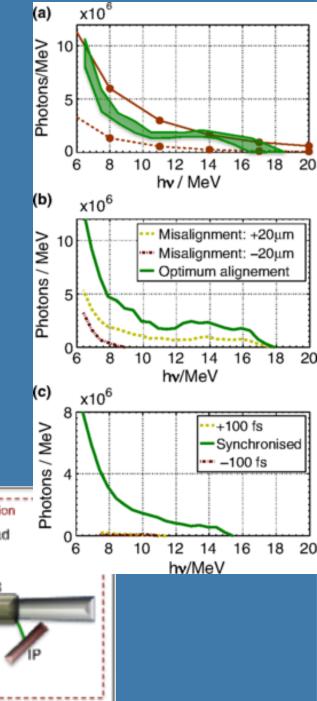
- Oncology, radioisotope production, perhaps nuclear physics and smart scanners
- Many improve with increasing laser intensity

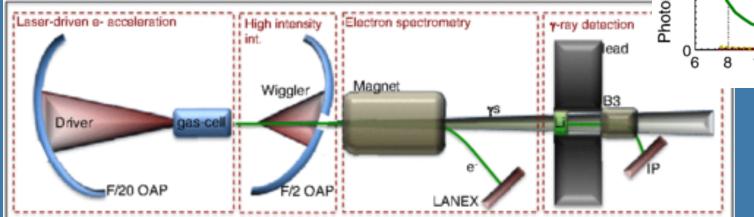

http://www.floridaproton.org/what-is-proton-therapy/benefits

Fundamental Science

PSR B1509-58 - X-rays from Chandra are gold; Infrared from WISE in red, green and blue/max. (NASA / Caltech)

• The *ultimate* intensity for study would be 10²⁹ Wcm⁻²


- Equivalent of 1.3 x 10^{18} Vm⁻²
 - The critical field in QED
- At E_{crit} the laser field is strong enough to break down the vacuum into pairs
- Studying quantum effects may be possible at lower laser intensity



- Effects of radiation reaction become important at 10²¹ Wcm⁻² if the 'target' is at 500 MeV
 INVERSE COMPTON SCATTERING
- Ideal experiment for a dual beam laser system

Laser-Plasma Interactions Nonlinear Inverse Compton Scattering

- First observation of nonlinear ICT by Sarri et al.
- Much was learned about measuring the gamma rays and the experimental difficulties associated with this setup

Recent Experiment: Astra Gemini

Astra Gemini Laser
Dual Beam PW-class Ti:Sapphire laser
Common front end (oscillator and three amplifiers)
Independently controlled fourth amplification stage and compressor

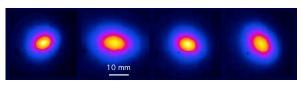
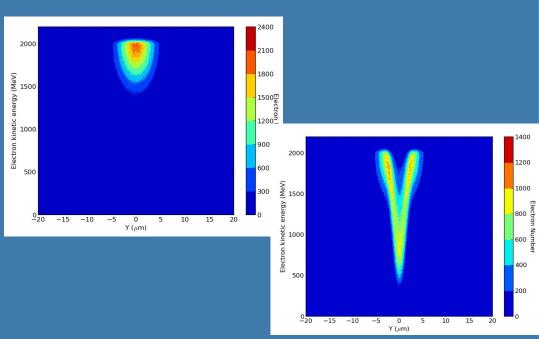
On our run:

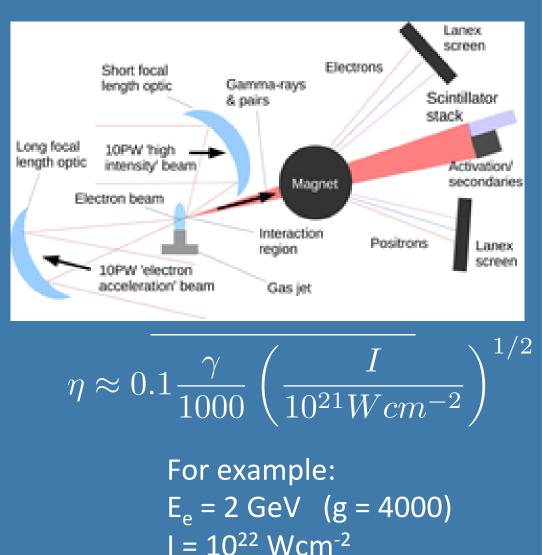
- pulse energy = 15 J per beam
- pulse duration = 44 fs
- F/20 focusing 20 micron spot
- F/2 focusing 2 micron spot
- Shot on demand (up to 1 every 20 seconds)

Similar to Apollon, but 10x less energy

Overview of Gemini Experiment

- In certain regimes, the electron beam may be elongated along the polarisation direction
- Plan was to hit the electrons as they left the gas jet to try to increase the fraction of electrons which interact
- EPOCH was used to optimise the 'drift' between the gas jet and the interaction
- Then all we needed was a nice electron bunch and good overlap...
- 'Murphy's Law' kicked in.
- We saw gamma rays on a CsI scintillator stack but not at tightest focus
 - Preliminary 'estimate' $a_0 \sim 5$


FIG. 3 (color online). Representative data showing the variation of electron beam profile with laser polarization at $n_e = 2.2 \times 10^{19} \text{ cm}^{-3}$ with a pulse duration of 68 fs. The black line indicates the laser polarization angle $\pm 5^{\circ}$. (a) -20° , (b) 10° , (c) 30° , and (d) 50° .

S P D Mangles et al. PRL 96 215001 (2006)

Example Apollon Experiment 1: Collisions

- In either LFA or SFA:
- We can generate electrons with F2
 - 2 GeV should be achievable
- We can interact with the electron beam with F1
 - 10²² Wcm⁻² should be accessible in early experiments
- Beam stability of one focal spot width would allow interaction at the highest intensity
- Even with the Phase 1 parameters exciting regimes will be accessible
- Possibly the first observation of positrons in the strongly nonlinear Breit-Wheeler regime

 $\eta = 1.2$

However, what about a solid target?

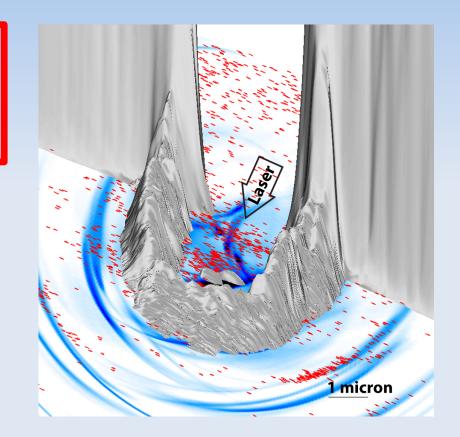
$$\eta = \gamma \frac{|\mathbf{E} + \mathbf{v} \times \mathbf{B}|}{E_{crit}}$$

- In an accelerated electron's inertial frame: $\eta \approx 0.1 \frac{\gamma}{1000} \left(\frac{I}{10^{21} W cm^{-2}}\right)^{1/2}$
- But in laser solid interactions, gamma is simply the a₀ of the laser:

 $a_0 = \frac{p_{\rm osc}}{m_e c} \propto (I\lambda^2)^{\frac{1}{2}}$

 $\eta \propto a_0 I^{1/2} \checkmark$

 $\eta \approx 0.2 \frac{I}{10^{23} W cm^2}$

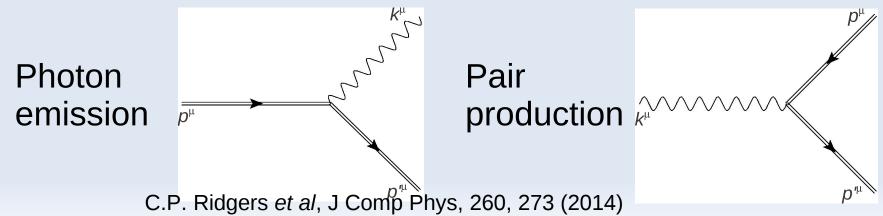

• So we can say:

The QED+Plasma Regime

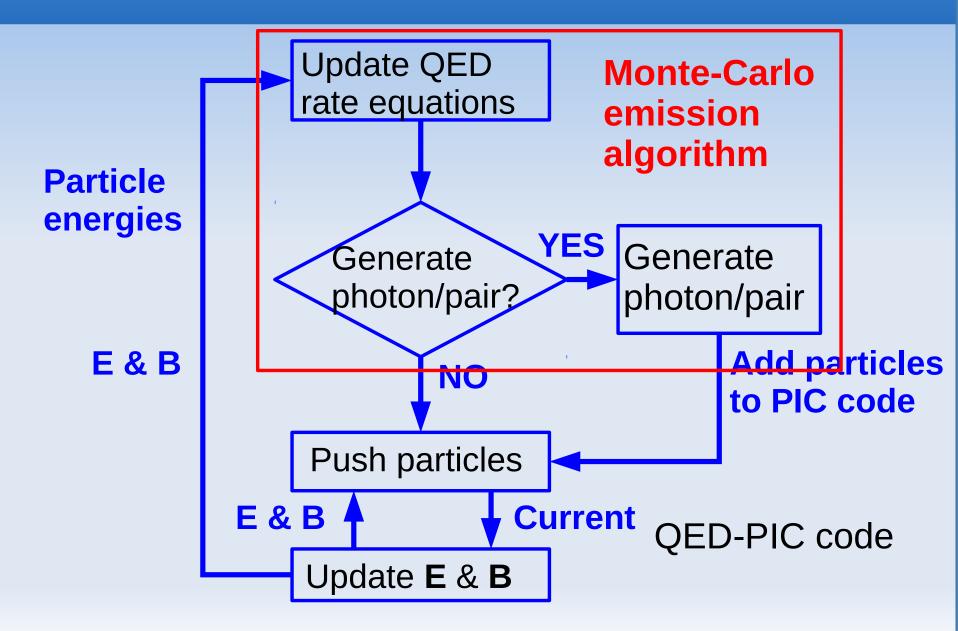
$$\eta \sim 0.1 \frac{I}{5 \times 10^{22} W cm^{-2}}$$

FEEDBACK QED processes

Classical Plasma Physics


C.P. Ridgers, et al, PRL, 108, 165006 (2012)

Quasi-classical model


1. Split EM field into 'low frequency' (laser-fields) & 'high frequency' (gamma-rays) components

- 2. 'Low frequency' fields are treated classically
- 3. Use strong-field QED basis states dressed by fields

4. Keep lowest order interactions between electrons, positrons, gamma-rays with classical low frequency fields

QED-PIC Codes

Ultra-relativistic plasma processes

1. QED effects:

$$\gamma \sim 0.1 \frac{I}{5 \times 10^{22} W cm^{-2}}$$

2. Relativistic transparency

$$n_{c}^{rel} \sim n_{s} \sqrt{\frac{I}{10^{23} W cm^{-2}}}$$

Relativistic correction to critical density

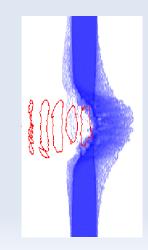
$$n_c = \frac{\gamma m_e \epsilon_0 \omega_L}{e^2}$$

Ultra-relativistic plasma processes

1. QED effects:

$$\eta \sim 0.1 \frac{I}{5 \times 10^{22} W cm^{-2}}$$

2. Relativistic transparency


$$n_{c}^{rel} \sim n_{s} \sqrt{\frac{I}{10^{23} W cm^{-2}}}$$

Relativistic correction to critical density

$$n_c = \frac{\gamma m_e \epsilon_0 \omega_L}{e^2}$$

3. Radiation pressure acceleration

$$\Xi \sim \frac{I}{10^{23} W cm^{-2}}$$

Ultra-relativistic plasma processes

1. QED effects:
$$\eta \sim 0.1 \frac{1}{5 \times 10^{22}}$$

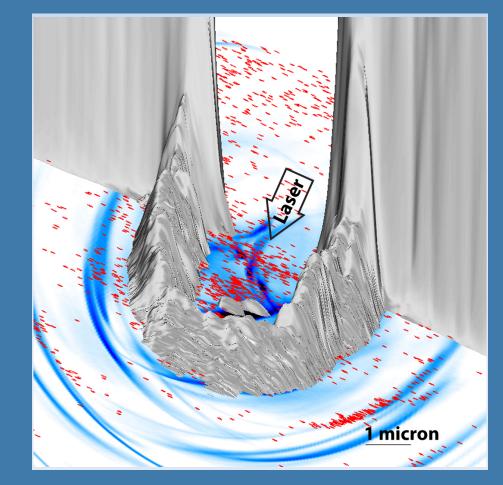
2. Relativistic transparency

$$n_{c}^{rel} \sim n_{s} \sqrt{\frac{I}{10^{23} W cm^{-2}}}$$

Relativistic correction to critical density

 Wcm^{-2}

$$n_c \frac{\gamma m_e \epsilon_0 \omega_L}{e^2}$$


3. Radiation pressure acceleration

$$\Xi \sim \frac{I}{10^{23} W cm^{-2}}$$

All 'switch-on' at ~10²³Wcm⁻²

Example Apollon Experiment 2: Solid Target Study

- Just shoot it.
- May potentially need advanced focusing to reach the required intensity
 - Rick?
- The important / difficult aspects here are:
 - Positioning the target
 - THE Ohio State University
 - Central Laser Facility
 - Measuring the gamma rays generated
 - Demonstrates a need for spectral measurement of gamma rays at ultra-high flux

'Conclusions'

- Experiments on current facilities are succeeding to make measurements but the experiments are very challenging and the results are often difficult to interpret
 - Increased involvement from other groups is essential
- Challenges and opportunities:
 - Electron Stability
 - Should be improved by lower plasma density and improved laser pointing stability at Apollon
 - Hitting the electrons with the laser
 - Currently experiments have yielded many ideas and expertise in this is growing
 - How will we obtain a gamma spectrum
 - Current work in conjunction with the University of York Nuclear Physics group at developing detector ideas
 - Queens University Belfast are also working on detector development