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Outline

• Scientific objectives
• Technical Objectives
• Current design	of	the	hall

– Chamber
– Debris
– Target	systems

• First	Light:	Commissioning experiments
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Scientific	Objectives:	“mission	statement”

The	short	(and	medium)	focal	length	area	is	focused	on	
taking	advantage	of	the	highest	possible	laser	intensities	
for:
– generating	extreme	(high	energy,	high	dose,	ultrashort,	
directional)	beams	of	ions,	e-,	X-rays	and	gamma-rays

– exploiting their unique	properties of	these beams as	a	driver	or	a	
probe	for	a	variety of	applications

– investigation	of	extreme	 intensity-driven	 phenomena (vacuum,	
non-linearity	at	UHI)
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Technical	Objectives	to	reach	the	Scientific	
goals

• 4	beams
– Prepare	for	as	many	beam	configurations	as	possible	in	angle	and	
parabola	F#

• High	repetition	rate:	1	shot/min
– How	to	fully	utilize	the	high	rate	with	multiple	target	assemblies
– Fast	laser	and	target	alignment;	and	beam	timing

Provide a flexible experimental area to accommodate as many 
different types of experiments as possible
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Laser Parameters
• Energy & Pulse length

– F1: 150 J max, 15 fs – 5 ps (10 ps)  ± 15 fs, 400 mm dia. 
• Jitter between SP1 &SP2: ± 1.5 fs
• Delay: ± 5 ns

– F2: 15 J, 15 – 200 fs ± 15 fs, 140 mm dia. 
– F3 Long Pulse: 300 J, 1 ns
– F4 Probe: 1 J, < 20 fs, 100 mm dia.

• Pre-pulse/Pedestal: will need to be up to 1 x 1012

• Best contrast of the short pulse à reservation for plasma mirrors
• Polarization: s-polarized, p-polarized, and circularly polarized
• Pointing  Stability: ± 1/5 focal spot diameter
• < 10 mJ in the 10 Hz low energy beam
• Continuous laser (independent from laser system) for all beam lines 

at 532 nm and 800nm
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F1

F3
F2F4

The design of the HE1 room has been 
made to conform to this objective
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Vertical 
space 
above TCC 
= 10 cm

SIDE VIEW TOP VIEW

Horizontal 
space next to 
TCC = 15 cm

• Off-axis	angle	=	30	degrees
• Rotation	around	TCC	=	60	

degrees
• The	parabola	will	be	F/2.5,	hence	

the	parabola	itself	and	mounting	
hardware	will	be	slitghly outside	
of	the	main	chamber

F1:	10	PW	beam
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F2:	1	PW	beam

2012-
09-14

• Enters	the	chamber	from	the	top
• The	beam	can	then	be	rotated	to	any	available	angle	

The mirror
at the top is
off the 
center to 
keep the top 
view clear
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Experimental	chamber

• 2	meters	in	diameter,	1	meter	tall
• Easy	access	to	TCC	from	every	angle	with	9	doors
• All	ports	point	to	TCC
• Floating	breadboard	(independent	of	chamber)
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Inner	structure
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Within the	chamber

Chamber delivery expected June 2017

Pumping:
4 turbos

Possibly: a 
trap on the 
pipe toward 
the 
compressor 
to allow a 
differential 
vacuum
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F2&F4 layout
in chamber
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Detailed design	
of	the	F2	injection
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Mezzanine 
with 
vacuum 
pumps
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The SFA will also be able to host 
risk-free magnetisation device

Optical 
diagnostics

Laser for 
Plasma generation

Magnetic 
field coil

Particle 
spectrometer

that allows strong magnetization of plasmas: RLarmor/Rplasma <1
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Ongoing work

• Debris shield

• Target injector 

• Alignment procedure

• Wavefront measurement

• Beam timing

• Plasma mirrors

• Laser diagnostics

• Experimental diagnostics
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Parabola	debris shield

• At ELFIE,	after 150	shots on	solid targets,	the	debris
shieled is opaque

• Options	that we are	considering&	testing
– Glass	30	µm	

– B-integral is still significant
– Difficult to	mount
– Not	expensive

– Membranes
– Can	be less than 10	µm
– Very expensive if	procured
– Stretching	machine as	a	possibility
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For	improved	contrast,	
plasma	mirrors	
can	be	installed	

before	focus
as	a	first	solution



pageJulien	Fuchs 20

M. Nakatsutsumi et al, 
Opt. Lett. 35 (2010)

Plasma optics at focus can also
enhance the on-target intensity



pageJulien	Fuchs 21

Beam alignment & wavefront
measurements
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Tape Target System is way to 
help mitigate the rep-rate issue

• A continuous target system
– Typically 20 m tape = 2,000 shots

• Cost per shot:
– Mylar: 2 cents
– Copper: 9 cents
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Design,	manufacturing
and	test	performed with satisfaction



pageJulien	Fuchs 24

High-density	gas	jet	based	targets	
will	be	another	way	of	generating	

high-rep	rate	targets
Dense gas jets for shock acceleration of particles
àdemonstrated with CO2 lasers (Palmer et al., Haberger et al.)
àOpens perspectives for high-repetition rate operation

Gas jet pressures 300 - 1000 bars
Achieves maximum gas density of 3 x 1021 atoms/cm3

Gas source
~200 bars

Compressor
Compresses up to 1000 bars

Gas Valve,  Nozzle, and Control 
System

Experimental chamber
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Commissioning	experiments	plan
a) First	Light	and	operations:	
• First	shots	onto	a	target;	
• debug	the	working	mode	of	the	facility,	
• integrate	diagnostics	and	equipment,	
• train	users	on	the	specificities	of	Apollon/Cilex by	performing	

experiments	with	relatively	known	parameters,	
b)	Check	the	source	terms that	have	been	proposed	for	the	
evaluation	of	the	radioprotection of	the	facility,	
c)	Commissioning	 Experiments	à toward original	data
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Phase	1:	Single	beam	experiments	
with	the	F2	beam

• Intensity	available	with	F/3	parabola:	1.4	x1021 W/cm2

– 15	J,	18-20	fs,	6	microns	spot	size,	0.5	Strehl	ratio	
– a0 =	36

• Proposed	Experiments
1. Ion	acceleration	from	solid	targets
2. HHG	generation	from	solid	targets
3. Betatron	generation

Perform experiments that require highest laser 
performance
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Validating F2 parameters
via proton/ion beam generation

• Laser used at full energy, with possible long pulse length (a 
few ps)

• Will need relatively high contrast ratio

• Target: <1 µm - 25 µm Au foil
• Nanometer targets will need a double plasma mirror installed  inside 

the experimental chamber OR plasma shutter

• Diagnostics: Thomson parabola+RCF+IP stack for γ
• Expected maximum proton energy of >20 MeV

parabole

Faisceau principal

cible

Faisceau auxiliaire (qq.	J	min.)

Micro-lentille

parabole

Faisceau principal

cible

Optiques conventionnelles

Spectro/T.P.

Spectro/T.P.

films

films
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These	first	shots	will	allow	to	
assess	the	level	of	pre-pulse/ASE	
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Modelling the irradiation of a Cu 15 µm 
thick target by ASE having duration of 
2.5 ns and variable intensities 
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Expected proton beam 
generation with F2
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t < 50 fs

50 fs < t < 900 ps

1 ps < t

Proton energy from current short pulse laser systems
We should expect >20 MeV 
protons from the F2 beam:
E = 15 J
Spot size 6 µm dia. with an F/3 
parabola
I = 1.4 x 1021 W/cm2

June 2015, 
PEARL (50 fs, 7 
J, target 0.8 µm)

Allow to evaluate the 
laser parameters and the 
temporal contrast

D
epends on contrast
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Studying plasma	mirrors on	APOLLON

Harmonic
beam

Relativistic
electron beam Electron spectrum

Harmonic
spectrum

Relativistic
electrons

Attosecond
pulses/
Harmonic

Plasma mirror

Source	of	high-order harmonics /	attosecond pulses
and	relativistic electron beams
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First	experiments on	APOLLON

• First focus the beam at the highest possible 
intensity on a solid target and measure the 
harmonic and electron emissions…

Benchmark for laser:
•Temporal contrast?
• Peak intensity?
• Spatial quality?

First diag:
HHG spectral 

measurements
Dromey et al, PRL 99, 085001 (2007)
Dromey et al, Nature Physics 2, 456 (2006)

VULCAN

⇒ Needs	=	high	temporal	contrast &	controllable	prepulse
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Then,	deploying F1	will allow
to	go	beyond 1022 W/cm2

~5	MeV ~60	MeV ~250	MeV ~GeV

~1019 ~1021 ~2	1022 ~2	1023

Transition	toward a	radiation-pressure	dominant	regime where
the	ion	bunch is:
*collimated
*monoenergetic
*efficient

Interest in	studying the	dependance on	laser	contrast and	
polarization
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Conclusion
• The	SFA	is geared to	be a	users’	facility &	allow users
to	implement&	test	their best	ideas

• A	large	variety of	experiments is the	desiredworking
mode	with ion,	harmonics,	electrons,	etc in	a	
compact	manner

• With the	parameters of	F2,	then F1,	we’ll reach
regimes that already offer great perspectives	for	
physics,	even during commissioningexperiments

• And	later on	will allow tackling a	great deal	of	
physics domains:	materials,	astro/spacephysics,	
nuclear,	bio/medical
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We welcome your input

• Experimental configurations

• Gather requirements for experimental diagnostics + 

desired location

• Help us test and develop diagnostics adapted to 

Apollon conditions



pageJulien	Fuchs 35

Remerciements

Laboratoire Charle s Fabry


