Laser Energised travelling wave accelerator a miniature, modular device for guided post-acceleration of laser driven ions

Satya Kar

Queen's University Belfast, UK.

Current motivations in the field of laser ion acceleration

One device -

focusing, energy selection, re-acceleration !

Laser energized travelling charge accelerator

Pioneering research and skills

S. Kar, PCT Patent-1400727.2, 2014

Outline

- Ultra-short current pulse generation
- How it works
- Experimental results (Dusseldorf, CLF)
* LETCA for upcoming laser intensities and STAGING

Charging and discharging following laser interaction

Proton imaging of laser irradiated wire

Multi-frame snapshot from a single shot

And, what we saw is very interesting!

Not only the current pulse travels over the bends,
reflects from an open end.

Laser Energised Travelling charge Accelerator

Analogy with the field of a charged ring

$$
\begin{aligned}
& x_{0}=\frac{a}{\sqrt{2}} \\
& E_{\max }=\frac{Q}{2 \pi \varepsilon_{0} a^{2}} \frac{\sqrt{2}}{3 \sqrt{3}}
\end{aligned}
$$

$Q^{\sim} 60 \mathrm{nC}, a=0.4 \mathrm{~mm}$

$E^{\sim} M V / m m$

Proof-of-principle at University-scale laser (ARCTURUS)

S. Kar et. al., Nature Communications, in press (2016)

\checkmark	$1.2 \mathrm{MeV}$	3.2 MeV	4.6 MeV	$\overline{5.6 \mathrm{MeV}}$	5368 meV	$\begin{gathered} \hline \hline 7.5 \mathrm{MeV} \\ 0 \\ 10 \mathrm{~mm} \end{gathered}$
V10000)	1.2 MeV	3.2 MeV	4.6 MeV	5.6 MeV	6.6 MeV	7.5 MeV 2 mm
	1.2 MeV	3.2 MeV	4.6 MeV	5.6 MeV	6.6 MeV	$7.5 \mathrm{MeV}$
			8.2 MeV	8.9 MeV	10.2 MeV	14 MeV $2 \mathrm{~mm}$

Proof-of-principle at University-scale laser (ARCTURUS)

S. Kar et. al., Nature Communications, in press (2016)

LETCA for Higher Intensity lasers

\& staging

Scaling to higher power laser

Typical electron spectrum from laser solid interaction:

$$
\frac{d N}{d E}=\frac{N_{0}}{U_{p}} e^{-E / U_{p}}
$$

where $U_{p}=0.511\left(\sqrt{1+a_{0}^{2} / 2}-1\right)$

Temporal evolution of target charge is controlled by target capacitance :

$$
N_{e s}(t)=N_{0} e^{-E_{\text {cuof }} / U}
$$

where $e N_{e s}(t) / C_{T}=E_{\text {cutoff }}$

Scaling to higher power laser + STAGING

Summary

$>$ Transient charging of laser irradiated target generates ultra-short charge pulse propagating along the supporting wire.

$>$ The unique properties of the charge pulse is exploited to create a device for simultaneous focussing, energy selection and re-acceleration of proton beams.

- Promising data obtained experimentally using university scale laser, which opens of possibility of optimising ion beam parameters with currently available higher power lasers.

1.2 MeV	3.2 MeV	4.6 MeV	5.6 MeV	6.6 MeV	7.5 MeV	8.2 MeV	8.9 MeV	10.2 MeV
6								

Acknowledgements

$>$ Queen's University of Belfast, UK
Prof. M. Borghesi, Prof. C. Lewis, Dr. H. Ahmed, Dr. D. Doria, Dr. G. Narsisyan, P. Hadjisolomou, G. Cantono,
C. Schulion, F. Hanton, D. Gwynne, K. Naughton
$>$ University of Düsseldorf, Germany
O. Willi, Dr. M. Cerchez, Dr. R. Prasad, S. Brauckmann, B. Aurand, A. M. Schroer,
A. L. Giesecke, Marco Swantusch
> Rutherford Appleton Laboratory, UK
Dr. APL Robinson
$>$ University of Pisa, Italy
Dr. A. Macchi
$>$ ELIBeamlines
Dr. D. Kumar, Massimo De Marco, Dr. S. Weber

ADVANCED STRATEGIES FOR
ACCELERATING IONS WITH LASERS
A.........................

Northern
Ireland

Thank you very much for your attention.

