Susana Izquierdo Bermudez, Juan Carlos Perez, Etienne Rochepault

Overview of grading considerations at CERN for a 16 T Dipole (Block type coil configuration)

Acknowledgments: Bernardo Bordini, Paolo Ferracin, Friedrich Lackner, Nicolas Perey, Ezio Todesco, Davide Tommasini, Daniel Schoerling,

Content

- 1. Introduction
- 2. Design constrains
- 3. Electromagnetic designs overview
- 4. Technical challenges and "solutions"
- 5. Summary and next steps

Content

1. Introduction

- 2. Design constrains
- 3. Electromagnetic designs overview
- 4. Technical challenges and "solutions"
- 5. Summary and next steps

1. Introduction - CERN strategy

ERMC

Enhanced Racetrack Model Coil 16 T midplane field

- Demonstrate field on the conductor
- Coil technology development

RMM

Racetrack Model Magnet 16 T in a 50 mm cavity

- Demonstrate field on the aperture
- Mechanics (including inner coil support)

DEMO

Demonstrator Magnet (blocks and cos-θ options under study)

• Accelerator quality magnet

1. Introduction: ERMC/RMM

ERMC/RMM : A two stages project

Stage 1 priorities:

- 1. Demonstrate the field
 - Design based on the "available" critical current density (~20% lower than FCC target at 18 T, 4.2 K)
 - As field quality is not an objective, profit from the use of an iron pole to decrease the ratio between the field in the aperture and in the coil to ~ 1
- 2. Study the mechanics

Stage 2 priorities:

- 1. Coil size \rightarrow Grading
 - Design based on the target FCC critical current density
 - High Field Nb₃Sn splice development needed
- 2. Field quality (b_n<10 units, including iron saturation)
 - Still, it will need to be accommodated within the same structure, changing only the collar pack assembly

1. Introduction

Stage 1 priorities:

- 1. Demonstrate the field
 - Design based on the "available" critical current density (~20% lower than FCC target at 18 T, 4.2 K)
 - As field quality is not an objective, profit from the use of an iron pole to decrease the ۲ ratio between the field in the aperture and in the coil to ~ 1
- Study the mechanics 2.

Stage 1 approach:

In order to optimise time and resources:

- ERMC double pancakes will be used at top/bottom RMM coils.
- Same structure for both magnets
 - Keeping the possibility of • having two set of pads to optimize the stress distribution on the coil.

Details: https://indico.cern.ch/event/446669/

1. Introduction

Stage 2 priorities:

- 1. Coil size \rightarrow Grading
 - Design based on the target FCC critical current density
 - High Field Nb₃Sn splice development needed
- 2. Field quality ($b_n < 10$ units, including iron saturation)
 - Still, it will need to be accommodated within the same structure, changing only the collar pack assembly

KEY ISSUE: Development of Nb₃Sn High field internal splices

Strategy:

- Magnet design following FCC targets in terms of critical current density and field quality
- ERMC will be the base to test the coil technology development:
 - It should allow the test of a single pancake

OBJECTIVE TODAY: PROVIDE AN OVERVIEW OF POSSIBLE GRADED DESIGNS INCLUDING TECHNICAL CHALLENGES AND IDEAS TO OVERCOME THEM.

Content

- 1. Introduction
- 2. Design constrains
- 3. Electromagnetic designs overview
- 4. Technical challenges and "solutions"
- 5. Summary and next steps

2.1 Strand

- Strand diameter:
 - From **0.7** to **1.1 mm**
- Copper to superconductor > 1
 - **Time margin** for protection \geq **50 ms**
- Strand critical current density:
 - FCC Target:
 - $T_{c0} = 16 \text{ K}, B_{c20} = 29.38 \text{ T}, C_0 = 267845 \text{ A/mm}^2\text{T}, 0 \% \text{ cabling degradation} J_c(4.2\text{K}, 16\text{T}) = 1507 \text{ A/mm}^2 J_c(4.2\text{K}, 18\text{T}) = 887 \text{ A/mm}^2$
 - ERMC/RMM:

$$\begin{split} T_{c0} &= 16 \text{ K}, \text{ B}_{c20} = 28.8 \text{ T}, \\ C_0 &= -255230 \text{ A/mm}^2\text{T}, \\ 5 \text{ \% cabling degradation} \\ J_c(4.2\text{K}, 16\text{T}) &= 1287 \text{ A/mm}^2 \\ J_c(4.2\text{K}, 18\text{T}) &= 735 \text{ A/mm}^2 \end{split}$$

2.2 Cable and Insulation

- Number of strands
 - "Preferred solution": less than 40 strands.
 - **"Possible solution": less than 50 strands.** Experience in Berkley with HD cable (51 strand, 0.8 mm diameter)
 - **"Risky solution": less than 60 strands**. Mechanical stability of the cable can be a big issue
- Cable insulation thickness = $150 \mu m$
 - Can be either only S2-glass or S2-glass/Mica
 - Experience in 927 in terms of electrical robustness:
 - MQXF: 150 µm S2-glass
 - MQXFS_001 ~ 3.5kV
 - MQXFS_101 ~ 6.25kV
 - 11T: 150 μm S2-glass/Mica before HT, 100 μm S2-glass/Mica after HT
 - 11T#110: > 7kV (limit of the capacitor discharge generator)

2.3 Size of the inner support structure

Based on RMM ANSYS analysis:

• Wall thickness = 6 mm

2.4 Overall magnet size

- Shell thickness = 70 mm
- Outer magnet diameter = 800 mm
- Iron optimized to have small of saturation on field quality

Content

- 1. Introduction
- 2. Design constrains
- 3. Electromagnetic designs overview
- 4. Technical challenges and "solutions"
- 5. Summary and next steps

3. Electromagnetic designs overview

14.92, tahn	21.32 mm	21.32 IAM	27.5 mm [*] , *

	Design A		Design B		Design C		Design D	
	HF	LF	HF	LF	HF	LF	HF	LF
Strand Diameter, mm	1.1	0.7	1.1	0.8	1	1	1	1
Number of strands	26	40	36	50	40	19	51	51
Non-insulated cable width, mm	14.92	14.92	21.32	21.32	21.32	10.13	27.5	27.5
Non-insulated cable thickness, mm	2.08	1.32	2.08	1.52	1.89	1.89	1.89	1.89
Copper to Superconductor Ration	1	1:2	1	1:2	1	1:2	1	1:2
A _{LF} /A _{FH}	1.	58	1.	37	2.	10	1.0	00

Some remarks:

- Designs C&D challenging coil fabrication (details will be addressed later)
- Designs B&D challenging cable (>40 strands)

3. Design A

		Desi	gn A		
		HF	LF		
Strand & Ca	ble	_			
Strand diameter	mm	1.1	0.7		
Cu2SC ratio		1	1.15		
# of strands in cable		26	40		
Coil dimensio	ons				
number of conductors		20	130		
coil area (per aperture), including insulation	mm2	2898	12821		
coil area (per coil), including insulation	mm2	1449	6411		
conductor area per coil	mm2	49	91		
r	mm	2	5		
w/r	w_eq	2	.6		
Equivalent coil width	mm	65.2			
Operation paramet	ers (16T)				
Inom	A	9310	9310		
Jsc	A/mm2	754	1300		
Jcu	A/mm2	754	1131		
Jeng	A/mm2	377	605		
Joverall	A/mm2	257	378		
Ratio LF/JF Joverall		1.	47		
Bore field at Inom	Т	16	.00		
Conductor peak field at Inom	Т	16.58	14.71		
Short sample li	imits				
Short sample current Iss at 4.2 K	А	10378	10382		
Coil peak field at 4.2 K Iss	Т	18.20	16.20		
Margin on the load line at 4.2 K	%	10	10		
Short sample current Iss at 1.9 K	А	11465	11456		
Coil peak field at 1.9 Iss	Т	19.90	17.70		
Margin on the load line at 1.9 K	%	19	19		

|B| (T)

Margin to quench (%)

110

v37 (11710 tons of Nb₃Sn)

CÉRN

3. Design A - Enhanced

		Desi	gn A	Design A	- Enhanced		
		HF	LF	HF	LF		
S	trand & (Cable			i		
Strand diameter	mm	1.1	0.7	1.1	0.7		
Cu2SC ratio		1	1.15	0.8	1.3		
# of strands in cable		26	40	26	40		
coil dimensions							
number of conductors		20	130	22	118		
coil area (per aperture), including insulation	mm2	2898	12821	3188	11638		
coil area (per coil), including insulation	mm2	1449	6411	1594	5819		
conductor area per coil	mm2	49	91	47	/20		
r	mm	2	5	2	25		
w/r	w_eq	2	.6	2			
Equivalent coil width	mm	65	5.2	62.8			
Operati	on param	eters (16T)					
Inom	Α	9310	9310	9800	9800		
Jsc	A/mm2	754	1300	714	1464		
Jcu	A/mm2	754	1131	892	1126		
Jeng	A/mm2	377	605	397	637		
Joverall	A/mm2	257	378	271	397		
Ratio LF/JF Joverall		1.	47	1.	.47		
Bore field at Inom	Т	16	.00	16	.00		
Conductor peak field at Inom	Т	16.58	14.71	16.65	14.24		
She	ort sample	limits					
Short sample current Iss at 4.2 K	А	10378	10382	10982	10943		
Coil peak field at 4.2 K Iss	Т	18.20	16.20	18.35	15.70		
Margin on the load line at 4.2 K	%	10	10	11	10		
Short sample current Iss at 1.9 K	А	11465	11456	12148	12114		
Coil peak field at 1.9 Iss	Т	19.90	17.70	20.10	17.10		
Margin on the load line at 1.9 K	%	19	19	19	19		

- Coil size can be reduced by 3.5 % when reducing the copper to superconductor ration from 1 to 0.8in the high field region.
- As a drawback, copper to superconductor ratios lower than 1 require R&D effort (difficult to achieve requirements with small |B| (T)

cabling degradation)

16.64 15.77 14.9 14.02 13.15 12.27 11.40 10.53 9.656 8.782 7.908 7.034 6.160 5.286 4.412 3.538 2.664 1.790 0.916 0.043

3. Design B

		Desig	gn B								
		HF LF									
Strand & Cable											
Strand diameter	mm	1.1	0.8								
Cu2SC ratio		1	1								
# of strands in cable		36	50								
coil dimension	ns										
number of conductors		11	101								
coil area (per aperture), including insulation	mm2	2264	15897								
coil area (per coil), including insulation	mm2	1132	7948								
conductor area per coil	mm2	58	29								
r	mm	2.	5								
w/r	w_eq	2.	9								
Equivalent coil width	mm	71.4									
operation paramete	rs (16T)										
Inom	Α	12790	12790								
Jsc	A/mm2	748	1018								
Jcu	A/mm2	748	1018								
Jeng	A/mm2	374	509								
Joverall	A/mm2	249	325								
Ratio LF/JF Joverall		1.	31								
Bore field at Inom	Т	16.	00								
Conductor peak field at Inom	Т	16.63	15.29								
short sample	9										
Short sample current Iss at 4.2 K	А	14198	14502								
Coil peak field at 4.2 K Iss	Т	18.25	17.07								
Margin on the load line at 4.2 K	%	10	12								
Short sample current Iss at 1.9 K	А	15703	16035								
Coil peak field at 1.9 Iss	Т	19.97	18.66								
Margin on the load line at 1.9 K	%	19	20								

16.63 15.76 14.89 14.02 13.15 12.28 11.41 10.54 9.675 8.804 7.934 7.063 6.193 5.323 4.452 3.582 2.711 1.841 0.970 0.100 ROXIE 10.2 22 44 66 88 110 0 Margin to quench (%)

|B| (T)

22

0

110

3. Design B - Enhanced

			Desi	gn B	Option B - Enhanced			
		HF		LF	HF	LF		
St	rand & Cal	ble						
Strand diameter	mm		1.1	0.8	1.1	0.7		
Cu2SC ratio			1	1	1	1.2		
# of strands in cable			36	50	36	57		
coil dimensions								
number of conductors			11	101	13	99		
coil area (per aperture), including insulation	mm2		2264	15897	2676	13870		
coil area (per coil), including insulation	mm2		1132	7948	1338	6935		
conductor area per coil	mm2		58	29	52	233		
r	mm		2	5	2	25		
w/r	w_eq	2.9			2	2.7		
Equivalent coil width	mm		71	.4	67.3			
operatio	n paramete	ers (16	6T)					
Inom	А		12790	12790	12548	12548		
Jsc	A/mm2		748	1018	734	1258		
Jcu	A/mm2		748	1018	734	1049		
Jeng	A/mm2		374	509	367	572		
Joverall	A/mm2		249	325	244	358		
Ratio LF/JF Joverall			1.	31	1.47			
Bore field at Inom	Т		16	.00	16	5.00		
Conductor peak field at Inom	Т		16.72	15.33	16.72	14.79		
s	hort sampl	e						
Short sample current Iss at 4.2 K	А		14198	14502	13993	14009		
Coil peak field at 4.2 K Iss	Т		18.25	17.07	18.20	17.00		
Margin on the load line at 4.2 K	%		10	12	10	10		
Short sample current Iss at 1.9 K	А		15703	16035	15498	15505		
Coil peak field at 1.9 Iss	Т		19.97	18.66	19.90	18.60		
Margin on the load line at 1.9 K	%		19	20	19	19		

- Coil size can be reduced by 6 % when increasing the grading ratio from 1.3 to 1.5
- As a drawback, the number of strands of the low field cable is 57 → risk in terms of mechanical stability
- Even for the enhance version, coil size is 3 % bigger than for the Design option A

|B| (T)

3. Design C

		Desi	gn C						
		HF	LF						
Strand & Cable									
Strand diameter	mm	1	1						
Cu2SC ratio		1	2						
# of strands in cable		40	19						
coil dimensions									
number of conductors		32	124						
coil area (per aperture), including insulation	mm2	6061	11329						
coil area (per coil), including insulation	mm2	3030	5665						
conductor area per coil	mm2	57	11						
r	mm	2	5						
w/r	w_eq	2.	8						
Equivalent coil width	mm	69	.5						
operation paramete	ers (16T)								
Inom	А	9800	9800						
Jsc	A/mm2	624	1970						
Jcu	A/mm2	624	985						
Jeng	A/mm2	312	657						
Joverall	A/mm2	207	429						
Ratio LF/JF Joverall		2.0	07						
Bore field at Inom	Т	16.	00						
Conductor peak field at Inom	Т	16.53	12.99						
short sample li	mits								
Short sample current Iss at 4.2 K	А	11263	10973						
Coil peak field at 4.2 K Iss	Т	18.80	14.30						
Margin on the load line at 4.2 K	%	13	11						
Short sample current Iss at 1.9 K	А	12456	12087						
Coil peak field at 1.9 Iss	Т	20.50	15.60						
Margin on the load line at 1.9 K	%	21	19						

CERN

26	(13400 tons of Nb ₃ Sn)
20	

15.67 14.81 13.95 13.09 12.23 11.37 10.51 9.657 8.797 7.938 7.078 6.219 5.359 4.500 3.640 2.781 1.921 1.061 0.202 ROXIE 10.2

44

66

Margin to quench (%)

0

22

88

110

|B| (T)

16.53

3. Design C

Design limited by the high current density in the low field.

In order to be able to protect (time margin > 45 ms), we need a copper to superconductor ≥ 2 .

- An increase of the copper to superconductor from 2 to 2.5 increases the time margin by ~ 5 ms.
- An increase on the operation current of ~ 1 kA implies 16 ms decrease on the time margin (assuming inductance does not change).

3. Design D

		Desi	gn D					
		HF	HF					
Strand & Cable								
Strand diameter	mm	1	1					
Cu2SC ratio		1	2					
# of strands in cable		51	25					
coil dimensions								
number of conductors		28	78					
coil area (per aperture), including insulation	mm2	6819	9258					
coil area (per coil), including insulation	mm2	3409	4629					
conductor area per coil	mm2	53	06					
r	mm	2	5					
w/r	w_eq	2.	.6					
Equivalent coil width	mm	66.1						
operation paramete	rs (16T)							
Inom	Α	13633	13633					
Jsc	A/mm2	681	2083					
Jcu	A/mm2	681	1041					
Jeng	A/mm2	340	694					
Joverall	A/mm2	224	459					
Ratio LF/JF Joverall		2.0	05					
Bore field at Inom	Т	16	.00					
Conductor peak field at Inom	Т	16.48	12.72					
short sample lin	mits							
Short sample current Iss at 4.2 K	А	15521	15111					
Coil peak field at 4.2 K Iss	Т	18.46	13.91					
Margin on the load line at 4.2 K	%	12	10					
Short sample current Iss at 1.9 K	А	17124	16650					
Coil peak field at 1.9 Iss	Т	20.15	16.65					
Margin on the load line at 1.9 K	%	20	18					

|B| (T)

16.48 15.62 14.76 13.90 13.04

v34 (12450 tons of Nb₃Sn)

3. Designs Comparison: Coil size

		0 22 \ 44 \ 66	88 110	, ¹ , ,					
		14.92, mm		21.32 mín ^{/*}		21.32 mm		27.5 mm	
		Desigr	n A	Des	ign B	Design	С	Design l	D
		HF	LF	HF	LF	HF	LF	HF I	IF
Strand diameter	mm	1.1	0.7	1.1	0.8	1	1	1	1
Cu2SC ratio		1	1.15	1	1	1	2	1	2
# of strands in cable		26	40	36	50	40	19	51	25
number of conductors		20	130	11	101	32	124	28	78
conductor area per coil	mm2	4992	1	58	329	5711		5306	
w/r	w_eq	2.6		2	9	2.8		2.6	
Equivalent coil width	mm	65.2	2	7	1.4	69.5		66.1	
		(Operation	Parameters	(16T)				
Inom	Α	9310	9310	12790	12790	9800	9800	13633	13633
Jsc	A/mm2	754	1300	748	1018	624	1970	681	2083
Jcu	A/mm2	754	1131	748	1018	624	985	681	1041
Jeng	A/mm2	377	605	374	509	312	657	340	694
Joverall	A/mm2	257	378	249	325	207	429	224	459
Ratio LF/JF Joverall		1.47	7	1.	.31	2.07		2.05	
Bore field at Inom	Т	16.0	0	16	5.00	16.00		16.00	
Conductor peak field at Inom	Т	16.58	14.71	16.63	15.29	16.53	12.99	16.48	12.72
			Short	sample limi	t				
Short sample current Iss at 4.2 K	А	10378	10382	14198	14502	11263	10973	15521	15111
Coil peak field at 4.2 K Iss	Т	18.20	16.20	18.25	17.07	18.80	14.30	18.46	13.91
Margin on the load line at 4.2 K	%	10	10	10	12	13	11	12	10
Short sample current Iss at 1.9 K	А	11465	11456	15703	16035	12456	12087	17124	16650
Coil peak field at 1.9 Iss	Т	19.90	17.70	19.97	18.66	20.50	15.60	20.15	16.65
Margin on the load line at 1.9 K	%	19	19	19	20	21	19	20	18

3. Designs comparison: Margin

3. Designs comparison: load lines

Design A

Design C

Design D

3. Designs Comparison: Protection

		Design A		Design B		Design C		Design D	
		HF	LF	HF	LF	HF	LF	HF	HF
Copper to superconductor ratio		1	1.15	1	1	1	2	1	2
Equivalent coil width		65	5.2	71	.4	69	9.5	66	i.1
Nominal Current	Α	9310	9310	12790	12790	9800	9800	13633	13633
Jsc	A/mm2	754	1300	748	1018	624	1970	681	2083
Jcu	A/mm2	754	1131	748	1018	624	985	681	1041
Jeng	A/mm2	377	605	374	509	312	657	340	694
Joverall	A/mm2	257	378	249	325	207	429	224	459
		Protection	with Quenc	h Heaters					
MIITs to reach 300 K (conductor+insulation)@ LF	MA2s		14.12		34.59		17.59		30.27
MIITs to reach 300 K (conductor+insulation) @HF	MA2s	32.30		62.66		53.17		86.21	
Stored energy in straight sect. at Inom (per aperture)	kJ/m	174	3.30	189	1.40	213	6.60	200	1.50
Stored energy density	MJ/m3	1	11	1)4	12	23	12	24
Differential inductance at Inom (per aperture)	mH/m	37	.19	20	.99	41	.92	20	.07
MIITs consumed during decay	MA2s	10.33	10.25	23.33	23.33	13.36	13.36	23.83	23.83
time margin	ms	253	45	240	69	415	44	336	35

3. Designs Comparison: Force & Stress

		Design A	Design A		Design B		gn C	Design D	
		HF LF		HF LF		HF	LF	HF F	IF
Equivalent coil width	mm	65.2		71.4		69	9.5	66.	1
Joverall	A/mm2	257	378	249	325	207	429	224	459
coil width	mm	56.30		64.00		61	.82	64.0	00
coil height	mm	63.28		66.89		68	.33	59.6	50
Fx (per quadrant) at 16 T	kN/m	9069		8989		94	-68	919	1
Fy (per quadrant) at 16 T	kN/m	-4016		-4109		-43	329	-457	'9
Fx/CoilHeight at 16 T	MPa	143		134		1	39	154	ł
Fy/CoilWidth at 16 T	MPa	-71		-64			70	-72	2
Fx (per quadrant) at 18 T	kN/m	11400		11340		11	010	1153	30
Fy (per quadrant) at 18 T	kN/m	-5271		-5430		-5.	354	-600)9
Fx/CoilHeight at 18 T	MPa	180		170		1	78	180)
Fy/CoilWidth at 18 T	MPa	-94		-85			78	-10	1

3. General remarks and conclusions

• The most compact, and "easiest" to build is Design A.

- Coil size is comparable to the achievable coil size for a cos-theta configuration.
- To further reduce the coil size, the option of two independently powered layers can be studied.

3. General remarks and conclusions

- Two power converters and a 50 x 1mm strands cable would lead to the most compact solution.
- We will not be able to build this in a flat coil configuration, but it might be possible with flared ends:
 - The lead of **the high field lower coil** can go out of the coil straight \rightarrow Nb₃Sn-NbTi standard splice
 - The lead of the **high field upper coil** cannot go out of the coil straight!
 - If the field is low enough, we could solder a NbTi cable to bring out.
 - If the field is too high for NbTi, it will be difficult to set up a robust configuration to bring the lead from the coil to the low field region to solder the NbTi.
 NbTi?

|B| (T)

Content

- 1. Introduction
- 2. Design constrains
- 3. Electromagnetic designs overview
- 4. Technical challenges and "solutions"
- 5. Summary and next steps

4. Technical challenges

Design A

- High inductance
- Nb₃Sn internal splice
- Min. conductor bending radius

- Nb₃Sn internal splice
- Cable geometry (50 strands)

Design C

- High inductance
- Nb₃Sn internal splice
- Complex coil geometry

- Nb₃Sn internal splice
- Complex coil geometry
- Min. conductor bending radius
- Cable geometry (50 strands)

Design A: Minimum bending radius

In block coils:

- Typically:
- $R_{min} = 8-10 \text{ x}$ Cable Mid Thickness
- The lowest found in literature: HD1
- $R_{min} = 6.5 x$ Cable Mid Thickness
- In this specific design R_{min} = 7 x Cable Mid Thickness

Remark: for the DS-11T dipole, this ratio is ~ 5.5 for the thin edge of the conductor

Proposal: winding test using SMC 11 T, RMC MQXF and FRESCA 2 in order to determine the minimum bending radius of each conductor.

We did similar tests for MQXF. For this specific test we will:

- Use RMC winding table
- Produce simple pole parts by 3 D printing with different radius (10,15 and 20 mm)

Fast and simple test

Designs A&C: Electrical insulation

- **High inductance** (~45 mH/m)
 - High inductive voltage in case of a quench → robust electrical insulation needed.
- **Mica-Glass insulation** successfully implemented on the 11 T project.
 - Potential to improve the electrical robustness, but more R&D needed (Developments stopped within the 11 T project for a question of budget and time.)

• Each aperture is made out of 4 double pancakes

• Each pancake can be built with a double pancake for the high field region + 2 single pancakes for the low field

- Two possible options:
 - Winding + Reaction + Splicing + Impregnation
 - High field and low field are wound together and spliced after reaction
 - Winding + Reaction + Impregnation + Splicing
 - High field and low field are wound, reacted and impregnated independently, and they are spliced after impregnation

- Two possible options:
 - Winding + Reaction + Splicing + Impregnation
 - High field and low field are wound together and spliced after reaction
 - Winding + Reaction + Impregnation + Splicing
 - High field and low field are wound, reacted and impregnated independently, and they are spliced after impregnation

1.1. Winding of the high field double pancake (standard winding as in RMC&SMC)

36

1.2. Winding of the upper low field layer

1.3. Winding of the lower field block

- Two possible options:
 - Winding + Reaction + Splicing + Impregnation
 - High field and low field are wound together and spliced after reaction
 - Winding + Reaction + Impregnation + Splicing
 - High field and low field are wound, reacted and impregnated independently, and they are spliced after impregnation

- Questions we need to answer:
 - Can we reach a good quality splice using the same technology as in the NbTi-Nb3Sn low field splice? (i.e. $Sn_{96}Ag_4$ and halogen free flux)
 - Are there solders more suitable than $Sn_{96}Ag_4$ or $Sn_{60}Pb_{40}$?
 - We don't have the same limit in terms of melting temperature than in the case of NbTi splices.
 - Can we splice two Nb₃Sn reacted (oxidized) cables without cleaning?
 - Is there a way to clean the cable without mechanical contact?
- Many of these questions can already be answered with a simple set up, measuring the contact resistance in the Diode Cryostat in SM18:

• But...this will tell us what is **a bad splice**. To know if we have a **good splice**, we need a **background field**.

• → "Wound Conductors Test Facilities" [F. Lackner], will provide a full electrical characterization of the splice (long term development)

42

Designs A&B: Nb₃Sn High Field Splice

Our need: Nb₃Sn/Nb₃Sn interlayer splice in **coil relevant conditions**

• On-going activity within a collaboration with STFC (UK) to develop an internal splice using RMC-ILS configuration.

• The same concept is applicable for our case, if we perform the splice in the end region.

- But this is taken some precious longitudinal space, so there might be better ways to do it!
- We could save this room if we make the splice at the level of the coil end spacers

1. Winding (HF) + Reaction (HF) + Impregnation (HF)

2. Winding (LF) + Reaction (LF) + Impregnation (LF)

• There is some room for creativity here, and we should also take a look to what was done in the past...

IEEE TRANSACTIONS ON MAGNETICS, VOL. 30, NO. 4, JULY 1994

An Experimental 11.5 T Nb₃Sn LHC Type of Dipole Magnet

A. den Ouden, S. Wessel, E. Krooshoop, R. Dubbeldam• and H.H.J. ten Kate Applied Superconductivity Centre, University of Twente P.O.Box 217, NL7500 AE Enschede, *HOLEC, The Netherlands

C. Electrical connection between the coils

The different widths of the inner and outer cables, as well as the complex reaction process, demand a different layout of the joint and the soldering technique than the usual splice. Instead, the first turn of the second layer is placed in the pole plane of the first layer over a length of 3 twist pitches. After both coils have been heat treated separately they are stacked. A connection piece which consists of a copper plate, wrapped with reacted Nb₃Sn wires, is put in place and connects both coil terminals. The connection piece and both coil terminals in both layers are soldered simultaniously with Ag/Sn. A connection produced in this way has a resistance when carrying 20 kA, that ranges from 0.3 n Ω at 0 T to 1.5 n Ω at 10 T. The heat is conducted away to the helium bath by an extension of the copper plate which sticks into the bore and which is mounted after impregnation.

Content

- 1. Introduction
- 2. Design constrains
- 3. Electromagnetic designs overview
- 4. Technical challenges and "solutions"
- 5. Summary and next steps

Summary and next steps

- A series of solutions to grade a block coil have been discussed, with a coil equivalent width ranging from 65 to 70 mm (compared to ~85 mm for non-graded solutions).
- The most compact solution that can be build with the present constraints is "Design A".
- Conservative design criteria for quench protection (time margin ~45 ms), which is the limiting factor for designs C and D.
- If low operating current and high inductance is a showstopper for a magnet operating in the machine, a compact solution with wide cable (50 strands x 1 mm) and two power supplies can be a good option.
- In all the cases, the main challenge is the development of the high field Nb₃Sn splice.

Additional slides

Parametric

- In general, the smallest coil is achieved when the load line margin is 10 % both in the high field and in the low field.
- But solutions can be found where the increase of coil size is not very big when the margin in the low field is increase by a factor 2:
 - The operating current can be slightly higher for the same peak field, so at the end the "lost" due to having less coil with high current density is balanced by the slightly higher current density

What if in Design A, we want 20 % margin in the low field?

Equivalent coil width: 65.2 MM Nb₃Sn for FCC: 11710 tons

Equivalent coil width: 66.6 MM Nb₃Sn for FCC: 12265 tons

Strand - RMM

- Strand diameter: **1 mm**
- Critical surface parametrization from EuroCircol, without self-field correction

$$B_{c2}(T) = B_{c20} \cdot (1 - t^{1.52})$$
$$J_{c} = \frac{C(t)}{B_{p}} \cdot b^{0.5} \cdot (1 - b)^{2}$$
$$C(t) = C_{0} \cdot (1 - t^{1.52})^{\alpha} \cdot (1 - t^{2})^{\alpha}$$

53

- Cu2SC ratio = 1.0
- Critical current degradation due to cabling = 5 % $T_{c0} = 16 \text{ K}, B_{c20} = 28.8 \text{ T}, \alpha = 0.96, C_0 = 255230 \text{ A/mm}^2 \text{ T}$

Sensitivity to the longitudinal block position

15/07/17 16:50

Other lay-outs we looked at

55

Design from G.S

CABLE AND C	TABLE I Coil Design	PARAMETERS		
Parameter	Unit	FCC	HD2	
Strand Diameter	mm	1.0	0.8	-0.15
Number of strands		51	51	
Cable width (bare)	mm	27.5	22.0	
Cable thickness (bare)	mm	1.75	1.40	
Minimum bending radius	mm	18.3	12.8	
Cable insulation thickness	mm	0.11	0.11	
Coil aperture (x/y)	mm	60/58	45/47	
Number of turns		46	54	
Strand area (1 quadrant)	cm ²	18.4	13.8	

Fig. 1. Left: reference twin-aperture design for FCC with symmetric coils and a central iron insert for magnetic decoupling. The iron yoke radius is 700 mm. Right: detail of the cross-section for one coil quadrant.

Sabbi, EUCAS-15_2A-LS-P-02.06

mm				
	TABLE	П		
MAGNET PERFORMANCE PARAMETERS AT 16 T DIPOLE FIELD				
Parameter	Unit	FCC-2ap	FCC-1ap	HD2
Operating current	kA	25.8	26.4	18.6
Current density (strand)	A/mm ²	644	659	725
Horiz. Lorentz force	MN/m	7.86	7.85	6.3
Horiz. Lorentz stress (*)	MPa	143	143	141
Inductance per unit length	mH/m	8.4	4.1	5.5
Stored energy per un. len.	MJ/m	2.8	1.4	0.85

1.5 kA	Λ/mm^2				
Reference Conductor	TABLE IV RENCE CONDUCTOR PROPERTIES ANY 1.9 K SHOR'			<0.5	
Parameter	Unit	FCC-2ap	FCC-1ap	HD2	
J_{c} (16T, 4.2K)	kA/mm ²	1.49	1.49	1.49	
Non-copper fraction		0.55	0.55	0.55	
Max Current at 1.9K (Iss)	kA	28.5	29.0	20.1	
Dipole field at Iss	Т	17.5	17.4	17.1	
Coil peak field at Iss	Т	18.5	18.4	18.1	
Operating point for 16T	%	90.4	90.8	92.5	
	8	30 %			

G.S design translated to FCC criteria

	Sabbi	FCC criteria
I @ 16 T, kA	25800	17400
Insulation thickness, mm	0.11	0.15
Copper to non-copper ratio	0.82	1
Operation point at 4.2K, assuming FCC target Jc	-1 %	5 % ! Should be >10%
Strand area per quadrant, cm ²	18.4	32

57

110

88

Margin to quench (%)

