

LSWG, January 18th, 2016

Beam-beam and Luminosity MDs

Y.Papaphilippou

Thanks to the Beam-beam and luminosity working group

and in particular

F.Antoniou, G.Arduini, S.Fartoukh, M. Fitterer, M.Giovannozzi, M.Hostettler, E.Metral, G.Papotti, T.Pieloni, R.Tomas, J. Wenninger

Outline

Beam-beam MDs

- □ Long-range effects and compensation
- Head-on and noise effects
- □ Beam-beam and optics
- Coherent effects (see E.Metral presentation)
- Luminosity MDs

Long-range B-B MDs

- Round optics (operational but also pushed β^*)
 - □ LR limits (crossing angle vs. lifetime and losses)
 - Part of commissioning for nominal 25ns scheme and operational β^*
 - Different chromaticity, octupole and triplet corrector settings (MD385, MD449)
 - IP1/5 phase advance scan
 - Higher intensity/brightness tests (ultimate 25ns, BCMS)
 - □ Tune-scan (MD395)
 - For each fill before physics
 - □ Working point close to half integer tune (MD405)

Long-range B-B MDs

- Round optics (operational but also pushed β^*)
 - □ LR limits (crossing angle vs. lifetime and losses)
 - Part of commissioning for nominal 25ns scheme and operational β^*
 - Different chromaticity, octupole and triplet corrector settings (MD385, MD449)
 - IP1/5 phase advance scan
 - Higher intensity/brightness tests (ultimate 25ns, BCMS)
 - □ Tune-scan (MD395)
 - For each fill before physics
 - □ Working point close to half integer tune (MD405)

Flat optics

- □ Passive compensation of tune during leveling (MD417)
- □ LR limits (crossing angle vs. lifetime and losses, MD437)

ATS optics

LR limits (crossing angle vs. lifetime and losses)

18/01/2016

Long-range Wire Compensation MDs

Four DC wires embedded in collimators (TCTs)
 Two per IP compensating only beam 2
 Under production, to be installed in LHC (2017-2018)

Long-range Wire Compensation MDs

- Four DC wires embedded in collimators (TCTs)
 - \square Two per IP compensating only beam 2
 - □ Under production, to be installed in LHC (2017-2018)
- Prove compensation of long range effect
 - □ At flat top, with trains vs. a few bunches (weak-strong regime)
 - Various observables
 - Lifetime, halo (special diagnostics), tune-spread
 - □ Tests with wires first in IP5 (2017) and then IP1 (2018)
 - Squeezed optics in 1 IP, un-squeezed and separated in the other

More details in LMC presentation (February, 24th) 18/01/2016

Head-on B-B and noise MDs

- Head-on beam-beam limit and leveling by separation (MD402)
 - □ In parallel plane (HV in IR1/5), or crossing plane (VH in IR1/5), or skew plane (45deg/135 deg)
 - \Box End of fill MD with trains

Head-on B-B and noise MDs

- Head-on beam-beam limit and leveling by separation (MD402)
 - □ In parallel plane (HV in IR1/5), or crossing plane (VH in IR1/5), or skew plane (45deg/135 deg)
 - \Box End of fill MD with trains
- High frequency noise on colliding beams (MD400)
 Emittance growth for "single" colliding bunches with different brightness against noise levels and damper gain
- Effect of low frequency noise
 - □ Mimicking triplet eigen-frequencies (MD453)
 - □ Effect 50Hz noise (PC filters)
 - Short test at injection and/or in conjunction with other MDs

B-B and optics MDs

- Chromaticity variation due to LRs (MD664)
 - □ Measure chromaticity of pilot vs train
 - \Box Vary crossing angle
 - \Box Can be combined with tune-spread measurements @ collision
- Beta-beating driven by beam-beam (MD979)
 - □ Pilot vs High-brightness bunch,
 - □ Beta-beating measurement and correction
 - □ Injection and then flat top

B-B and optics MDs

- Chromaticity variation due to LRs (MD664)
 - □ Measure chromaticity of pilot vs train
 - □ Vary crossing angle
 - \Box Can be combined with tune-spread measurements @ collision
- Beta-beating driven by beam-beam (MD979)
 - □ Pilot vs High-brightness bunch,
 - Beta-beating measurement and correction
 - □ Injection and then flat top
- Un-squeezed optics in 1 IP (BBLR compensation, triplet correction)
 - □ 1 IP (preferably IP5) fully squeezed, the other un-squeezed and separated
 - □ Pilot and then bunch trains

Luminosity MDs

- Evolution of the beam distribution through the LHC cycle (MD 204)
 - Single bunches with different brightness and profile measurements
 - □ Can be parasitic (transverse and longitudinal profile logging)
- Observation of single beam parameter evolution (MD470)
 Non-colliding bunches emittance evolution (parasitic MDs)
 Stability (different chromaticity and octupoles)
 Dependence on number of LRs

Luminosity MDs

- Evolution of the beam distribution through the LHC cycle (MD 204)
 - Single bunches with different brightness and profile measurements
 - □ Can be parasitic (transverse and longitudinal profile logging)
- Observation of single beam parameter evolution (MD470)
 Non-colliding bunches emittance evolution (parasitic MDs)
 - □ Stability (different chromaticity and octupoles)
 - □ Dependence on number of LRs
- "OP scans" for determining emittance through luminosity
 Parasitic MDs
 - □ Beam stability for scans at IP1
 - □ Perform scans at both IPs simultaneously
 - □ Impact of longitudinal profiles

Summary

Theme	LHC	HL-LHC	FCC	Shifts	Priority
LR limits nominal optics (angles, Q', octupole)	X			1	1
LR limits ATS/flat/low β^* optics	X	Х		3	2
LR limits tune-scan	Х	Х		Physics fills	1
LR limits close to half integer tune	X	Х		1	2
LR limits phase advance scan and pile-up		Х		0.5	2
LR wire compensation (optics preparation + compensation)	(x)	X	(x)	2 + 4	1
HO beam-beam limit and leveling		Х	X	1	1
High/Low frequency noise	X	Х	X	3	1
Beta-beating/chromaticity due to BB		X	X	1	2
Evolution of beam distributions	X	X	X	1	2
Evolution of single beam parameters through cycle	X	Х	X	Physics fills	1
OP scans	X	X		Physics fills	1