CLIC Crab Cavity Post-Mortem analysis

Ben Woolley

(CERN)

Enrique Rodríguez Castro (University of Vigo)

23.03.2016

<u>Outline</u>

- Introduction
- Objective
- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning

• Distribution

- BD distribution in the iris
- BD location Vs E-Field
- BD location Vs H-Field
- BD location Vs Sc-Field
- Facing irises (same cell)

• Acquisition

- Imaging
- Marking
- Counting

• Catalogue of features related with breakdown activity

- Comparison with other tested structures
- Craters
- Worm Like Features (WLF)
- Summary of observations

<u>Outline</u>

Introduction

- Objective
- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning
- Distribution
 - BD distribution in the iris
 - BD location Vs E-Field
 - BD location Vs H-Field
 - BD location Vs Sc-Field
 - Facing irises (same cell)
- Acquisition
 - Imaging
 - Marking
 - Counting
- Catalogue of features related with breakdown activity
 - Comparison with other tested structures
 - Craters
 - Worm Like Features (WLF)
- Summary of observations

CLIC Crab Cavity

Tested at Xbox 2

•

•

Courtesy of B. Woolley

Xbox-2 Diagnostics

Courtesy of B. Woolley

Full Processing History

Structure has seen almost 390 million pulses with over **5700 breakdown events**. Performed well above the operating limit of 13.35 MW: 43MW, 200ns flat-top, BDR 3e-6. Peak power reached: 51 MW, 100 ns flatAtopy BDR 3e-5. Castro

<u>Outline</u>

Introduction

• Objective

- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning
- Distribution
 - BD distribution in the iris
 - BD location Vs E-Field
 - BD location Vs H-Field
 - BD location Vs Sc-Field
 - Facing irises (same cell)
- Acquisition
 - Imaging
 - Marking
 - Counting
- Catalogue of features related with breakdown activity
 - Comparison with other tested structures
 - Craters
 - Worm Like Features (WLF)
- Summary of observations

Objective

- Breakdown features (BDs) observation.
 - Are they similar to those in monopole structures.
- Macroscopic observation of BDs.
 - How are they distributed in the iris?
 - Distribution relation in the cell
 - Comparison against E-field, H-Field and Sc-Field

<u>Outline</u>

- Introduction
- Objective
- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning
- Distribution
 - BD distribution in the iris
 - BD location Vs E-Field
 - BD location Vs H-Field
 - BD location Vs Sc-Field
 - Facing irises (same cell)
- Acquisition
 - Imaging
 - Marking
 - Counting
- Catalogue of features related with breakdown activity
 - Comparison with other tested structures
 - Craters
 - Worm Like Features (WLF)
- Summary of observations

Cutting and nomenclature

Cell 1 Iris 1 (Far from wire during cutting)

Marks and pollution induced by **Post-Mortem cutting**

Signal A = SE2

After cleaning

WOOIley/E. Rod prevent = 20.00 kV WD = 15.2 mm Port Mortem - Crab Cavity Cell 1 - Iris 2 Smatstich

Signal A = SE2

Mag = 1.00 K X

General appearance of the surface after cleaning

100 µm ┝──┥ EHT = 20.00 kV WD = 15.2 mm Signal A = SE2

Port Mortem - Crab Cavity B. Woolley/E.**Cell**riged**ris**a2ro Smatstich

TD24 R05

TD24 R05

 Marks induced by subsequent cuttings performed by EDM wire cutting (2014 Post Mortem analysis TD24 R05)

<u>Outline</u>

- Introduction
- Objective
- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning

• Distribution

- BD distribution in the iris
- BD location Vs E-Field
- BD location Vs H-Field
- BD location Vs Sc-Field
- Facing irises (same cell)
- Acquisition
 - Imaging
 - Marking
 - Counting
- Catalogue of features related with breakdown activity
 - Comparison with other tested structures
 - Craters
 - Worm Like Features (WLF)
- Summary of observations

<u>Cell 1 – Iris 1</u>

Number of sites BD sites = 1681

B. Woolley/E. Rodriguez Castro

<u>Cell 1 – Iris 1</u> Vs Sc-Field

Number of sites BD sites = 1573

B. Woolley/E. Rodriguez Castro

<u>Cell 1 – Iris 2</u> Vs E-Field

<u>Cell 1 – Iris 2</u> Vs H-Field

<u>Cell 1 – Iris 2</u> Vs Sc-Field

<u>Cell 1 – Iris 1</u> Vs Cell 1 – Iris 2

B. Woolley/E. Rodriguez Castro

<u>Cell 2 – Iris 1</u> Vs H-Field

B. Woolley/E. Rodriguez Castro

<u>Cell 2 – Iris 2</u> Vs E-Field

<u>Cell 2 – Iris 2</u> Vs H-Field

<u>Cell 2 – Iris 2</u> Vs Sc-Field

B. Woolley/E. Rodriguez Castro

<u>Outline</u>

- Introduction
- Objective
- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning
- Distribution
 - BD distribution in the iris
 - BD location Vs E-Field
 - BD location Vs H-Field
 - BD location Vs Sc-Field
 - Facing irises (same cell)

• Acquisition

- Imaging
- Marking
- Counting
- Catalogue of features related with breakdown activity
 - Comparison with other tested structures
 - Craters
 - Worm Like Features (WLF)
- Summary of observations

Acquisition of Images

Multi-Scan with SEM

Acquisition of each global image (≈16h to 24h):

- Input Cell 5000 images/Iris
- Rest of Cells ≈ 3000 images/iris

Stitching with MATLAB

SmartSEM-SmartStitch ZEISS

Counting of features

Limitations

- Manually
- Thousands of sites
- Conservative counting due to BD overlapping / various in the same site...
- Difficult due to surface state tro

Marking

Limitations

- Manually
- Thousands of sites
- Conservative counting due to BD overlapping / various in the same site...
- Difficult due to surface status

Counting

Analysis of the mask with *Zeiss Axio Visio – Particle analyser* for an automatic counting of the features

<u>Outline</u>

- Introduction
- Objective
- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning
- Distribution
 - BD distribution in the iris
 - BD location Vs E-Field
 - BD location Vs H-Field
 - BD location Vs Sc-Field
 - Facing irises (same cell)
- Acquisition
 - Imaging
 - Marking
 - Counting

• Catalogue of features related with breakdown activity

- Comparison with other tested structures
- Craters
- Worm Like Features (WLF)
- Summary of observations

<u>Cell 2 – Iris 2</u>

Number of sites BD sites = 1305

13.8

....

B. Woolley/E. Rodriguez Castro

B. Woolley/E. Rodriguez Castro

<u>Outline</u>

- Introduction
- Objective
- Cutting and Nomenclature
 - Marks and pollution induced by Post-Mortem cutting
 - Cleaning (degreasing)
 - General appearance of the surface after cleaning
- Distribution
 - BD distribution in the iris
 - BD location Vs E-Field
 - BD location Vs H-Field
 - BD location Vs Sc-Field
 - Facing irises (same cell)
- Acquisition
 - Imaging
 - Marking
 - Counting
- Catalogue of features related with breakdown activity
 - Comparison with other tested structures
 - Craters
 - Worm Like Features (WLF)
- Summary of observations

Summary of observation

• Distribution of BDs is different than in monopole structures

- Craters and features have same morphology that those in monopole structures
- BDs number drops significantly after firsts cells
 - To be confirmed with the complete observation (on going)

Thank you for your attention. Questions?

Extra Slides

<u>Cell 1 – Iris 2</u> Vs Cell 2 – <u>Iris 1</u>

<u>Cell 2 – Iris 2 Vs Cell 3 – Iris 1</u>

