Stochastic modelling of BD nucleation

Amit Weiss, Eli Engelberg , Yinon Ashkenazy Racah Institute of Physics, Hebrew University, Jerusalem, Israel

PSB -> protrusions

- Previously observed in fatigued surfaces.
- Significant sub-surface PSB leading to these surface features.
- Stochastic response at subyield stresses.

Fatigue strength and formation behavior of surface damage in ultrafine grained copper with different non-equilibrium microstructures

M. Goto et al. Int J of Fatigue. Vol 30 (2008) 1333

Laurent et.al. Phys Rev STAB 14 (2011) 41001

Trying to validate and calibrate a model

Model for plastic deformation under high fields

Acoustic emission

Microscopy of features post BD

Dark current measuremnts

Identifying pre-BD features

What are we looking for?

- Suggest a model which will reproduce critical protrusion formation due to plastic response in the substrate?
- Criticality due to interaction between dislocations and field emitter.

Consistency with observable characteristics:

- Protrusions dynamics must allow for them to disappear:
 - No strong memory effect.
 - No observable PSB or PSM
- BD rates of similar order of magnitude as observed
- BD rate field dependency: BDR $\propto E^{30}t^5$

Hope to achieve:

Critical experimental scenarios,
predictions of observable features (microscopy)
Possible outcomes - conditioning schemes, surface modifications,
understand statistics...

Od mean field mobile dislocations model

Mean field - Single slip plane.

Define the "in-plane" mobile dislocations density (1/nm).

Protrusions forming on surface due to dislocations arriving to surface

Elastic interaction between dislocations

Field enhancement due to protrusion leads to increase in localized stress

Simulating up to creation of a runaway process which will lead to eventual tip evaporation

Not yet in...

Surface evolution - leads to hardening due to cellular structure interaction between sites

General gain-loss type Markovian processes

Rates for transition between states

$$n \xrightarrow{\rho_n^+} n+1 \qquad \text{n-1 n n+1}$$

$$n \xrightarrow{\rho_n^-} n-1$$

The master equation

$$\dot{P}_{n} = \Gamma_{n-1}^{+} P_{n-1} + \Gamma_{n+1}^{-} P_{n+1} - \left(\Gamma_{n}^{+} + \Gamma_{n}^{-} \right) P_{n}$$

can lead to bifurcation: a metastable state and a critical one.

We look for the quasi-stationary probability distribution function And the probability to cross the critical point (reach extinction)

Approximate solution based on WKB theory with 1/N being the small parameter. $\dot{P} = 0 \quad \triangleright \quad P(n) \quad P(rN) \sim e^{-N[S(r) + O(1/N)]}$

Model basics

- Mobile dislocation multiply:
 - Activate sources
 - Release sessile dislocations at pile-ups
 - oProtrusion effect on stress and temperature
- Mobile dislocations depletion
 - oCollision obstacles, other moving dislcaoitns, surface
- Protrusion form due to accumulation of dislocations but relax through diffusion (a kinetic factor)
- The problem multi physics + multi parameters
 - oFirst trials use what we have
 - oBetter trials- learn what we need

Applied field effect

Low fields:

Mobile dislocation density remains at Metastable region. Dynamic barrier decreases with increasing fields.

Up to a critical stress – bifurcation to two solutions. Above it - no meta-stable state solution.

 $E = 100 \frac{MV}{\pi}$ $E = 190 \frac{MV}{\pi}$

Parametrization

- The model contains various competing mechanisms which can not be readily estimated.
- We scan the parameter space to see if a combination of such parameters does allow for observable behavior
- If such a region in parameter space does exist we can then check whether such a combination is indeed physically viable.
- Two main observables are used for that
- Experimental BD rates: 10⁻⁷ [bpp/m]
 - Estimating the number of active regions per m:

$$N\left(\frac{1}{m}\right) = \frac{\left(\frac{N_{iris}}{m}\right) \cdot \left(S_{iris}\right)}{dR_{active\ regions}^{2}} \approx \frac{100 \cdot 2\pi \cdot 2.35(mm) \cdot 1(mm)}{(10^{-2}mm)^{2}} = 10^{7}$$

Since the pulses are of 230 nsec we get:
$$\tau(BD)_{per\ area\ unit} = dt_p/(P(bpp/m)/N) = \frac{230nsec}{\frac{10^{-7}}{10^{7}}} \approx 10^{7} (\frac{sec}{zone})$$

Field dependency of the breakdown rate (estimated as E^{30}). So we define the localized (10%) exponent : $n = \log_{1.1}(\frac{\tau(E)}{\tau(1.1 \cdot E)}) \approx 30$

Cell size derived from microscopy

Still no clear differentiation between diamond machining effect and recrystallization Clear top layer modifications including region with twins, slip bands localized reliefs...

Parameter space – kmc simulations

· full model validity range - using kmc

Parameter space – kmc simulations

· full model validity range - using kmc

Observable values:

$$au_{bd} pprox 10^7 sec$$
 , $n = ln(\frac{ au(E)}{ au(rE)})/ln(r) pprox 30$

• Significant coincidence region:

Effect of kinetic relaxation parameter

Relaxation kinetics (surface diffusion) defines two limits:

- a. Fast-surface topography follows mobile dislocations content.
- b. Slow-surface builds up even at metastable state of mobile dislocations.

Evolution trajectories

 Dynamics of surface protrusions shows relation between surface protrusions and mobile dislocations.

We get a power law.... (E^30)....

Signs of criticality

- Adiabatically moving between quasistationary PDF:
 Change in pdf moments with field
 -> identify threshold
- At specific conditions, probe time dependencies of the QS pdf: Identify large fluctuations time dependency
 - -> identify time constants
 - -> mechanism

$$P_{c}(S, \Gamma, t) = \hat{\mathbf{0}}_{0}^{t} P(S, \Gamma > \Gamma, t) dt$$

PRE-BD signals

- As the system approaches the critical point.
 Fluctuation diverge.
- Observable through standard deviation of the time correlation

$$SD(t) = \frac{\int_{t-D}^{t+D} (I(t) - \langle I \rangle)^2 dt}{(\langle I \rangle)^2}$$
generally,

• Or, more generally, autocorrelation in the signal $R(k) = \frac{\grave{0}_{0}^{t-k}(I(t)-\langle I \rangle)(I(t+k)-\langle I \rangle)dt}{\grave{0}_{0}^{t-k}(I(t)-\langle I \rangle)^{2}dt}$

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸

Reminder - Observations until now...

DC and RF indications of pre-breakdown increase in

dark current variance

RF data - Alberto Degiovanni

Field dependent fluctuations

- Monitoring FN allows direct access to the protrusion population, and therefor show pre BD increase.
- Time scale of fluctuations indicative to the dynamic timescale.

To compare .. We need to describe run away evolution!

Current Effort

- Improve parameterization.
- Acoustic signal prediction
- Combine functional input on:
 - o kinetics of smoothing
 - Thermal stresses
- Quantify conditioning effect
- Precipitates / impurities effect

Questions:

- Kill mechanism for sub-BD events.
- Limiting parameter space
- Supporting experimental info? Can fluctuation be identified?
- Post runaway evolution...
- Will you attend mevarc 2017?!

