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PSB -> protrusions

* Previously observed in
fatigued surfaces.

 Significant sub-surface PSB
leading to these surface

features.
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Trying to validate and calibrate a model

Model for plastic
deformation under
high fields

Microscopy of

Acoustic emission features post BD

Dark current |dentifying pre-BD
measuremnts features




What are we looking for?

« Suggest a model which will reproduce critical protrusion formation due to
plastic response in the substrate?

* Criticality due to interaction between dislocations and field emitter.

Consistency with observable characteristics:

* Protrusions dynamics must allow for them to disappear:

o No strong memory effect.
o No observable PSB or PSM

« BD rates of similar order of magnitude as observed

 BD rate field dependency: BDR o E30¢>

Hope to achieve:

Critical experimental scenarios,
predictions of observable features (microscopy)

Possible outcomes - conditioning schemes, surface modifications,
understand statistics...




0d mean field mobile dislocations model

Mean field - Single slip plane.
Define the “in-plane” mobile dislocations density (1/nm).

Protrusions forming on surface due to dislocations arriving to surface
Elastic interaction between dislocations

Field enhancement due to protrusion leads to increase in localized
stress

Simulating up to creation of a runaway process which will lead to
eventual tip evaporation

Not yet in...

Surface evolution - leads to hardening due to cellular structure
interaction between sites




General gain-loss type Markovian processes

Rates for transition between states

The master equation

P=r P +r P, - (r;+r,;)P

n n+l” ntl n

can lead to bifurcation:
a metastable state and a critical one.

We look for the quasi-stationary probability distribution function
And the probability to cross the critical point (reach extinction)

Approximate solution based on WKB theory with 1/N being the
small parameter. P=0 b P(n)° P(rN)~¢ N[S(r)+O(UN)]
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Model basics

Mobile dislocation multiply:

oActivate sources
oRelease sessile dislocations at pile-ups
oProtrusion effect on stress and temperature

Mobile dislocations depletion

oCollision - obstacles, other moving dislcaoitns, surface

Protrusion form due to accumulation of dislocations
but relax through diffusion (a kinetic factor)

The problem — multi physics + multi parameters

oFirst trials — use what we have
oBetter trials- learn what we need



Applied field effect .,
Low fields: ,:Ti
Mobile dislocation density
remains at Metastable region.

Dynamic barrier decreases with 104
iIncreasing fields.
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Parametrization

The model contains various competing mechanisms which can not be
readily estimated.

We scan the parameter space to see if a combination of such
parameters does allow for observable behavior

If such a region in parameter space does exist we can then check
whether such a combination is indeed physically viable.

Two main observables are used for that
Experimental BD rates: 107 [bpp/m]

o Estimating tpe number of active regions per m :
1) LLS). (Siris) _ 100-27:2.35(mm)-1(mm) __ . 7
N (_) o 2™ (1072mm)?2 =10
o Since the pulses are of 230 nsec we get :
230nsec

T(BD)per area unit — dtp/(P(bpp/m)/N) == = 107(

107

Field dependency of the breakdown rate (estimated as E3°) .

So we define the localized (10%) exponent : n = log; 4 (T(Tl(f)E)
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Cell size derived from microscopy
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Still no clear differentiation between diamond machining effect and recrystallization
LCIear top layer modifications including region with twins, slip bands localized reliefs...




Parameter space — kmc simulations
» full model validity range - using kmc




Parameter space — kmc simulations
» full model validity range - using kmc
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Significant coincidence region:

log(x)



Effect of kinetic relaxation parameter

Minimal stress

~ No relaxation >
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Relaxation kinetics (surface diffusion) defines two limits:

, a. Fast- surface topography follows mobile dislocations content.
_u: Slow- surface builds up even at metastable state of mobile dislocations .
o



Evolution trajectories

* Dynamics of surface protrusions shows relation between
surface protrusions and mobile dislocations.
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We get a power law.... (E*30)....




Signs of criticality

« Adiabatically moving between quasi-
stationary PDF:
Change in pdf moments with field

-> [dentify threshold

« At specific conditions, probe time
dependencies of the QS pdf:
|dentify large fluctuations time dependency

-> identify time constants "
-> mechanism
Pc(s,r,t):(‘jP(s,r‘> r.t)de
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PRE-BD signals REVIEVS

Early-warning signals for critical transitions

* As the system approaches Hrmann Hld, et P o ' s Rehen” &G Soghara et Bk
the critical point.

Fluctuation diverge.

* Observable through , S
standard deviation of the HT Y e
time correlation

Mean vegetation biomass —>

- * barren state
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Reminder - Observations until now...

 DC and RF indications of pre-breakdown increase in
dark current variance
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Field dependent fluctuations

indicative to the dynamic timescale.

Monitoring FN allows direct access to the protrusion population,
and therefor show pre BD increase.

Time scale of fluctuations -
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. To compare .. We need to describe run away evolution!
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Current Effort

Improve parameterization.
Acoustic signal prediction

Combine functional input on:

o kinetics of smoothing
o Thermal stresses

Quantify conditioning effect
Precipitates / impurities effect

Questions:

Kill mechanism for sub-BD events.

Limiting parameter space

Supporting experimental info? Can fluctuation be identified?
Post runaway evolution...

Will you attend mevarc 20177!
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