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• High aspect ratio tips
• Field emitters

Dislocations and plastic 
deformation as source 

of emitters

• Surface stress due to 
high electric field

• Emission currents

Subsurface voids, 
precipitates as stress 

concentrators

FEM simulations of field emitters

Bulk simulations:
Multiscaling, coupling to 

other methods
kMC, MD, FEM

Strongest/weakest 
nanostructure estimation

Material Surface 
Simulations:
Field emitters

Surface reconstruction

Electric field over 
surface:

Emission currents
Surface stress

Comparison of simulation 
and experiment:

Emission current 
measurements
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Main factors affecting 
the emission currents

• Possible reasons behind high beta values

Behavior of single 
emitter

Behavior of system 
of emitters

Integral behavior 
and surface 
dynamics

• Static system in all 
local configurations

• Changes in system in 
time or during field 
ramping

• Possible mechanisms 
leading to apparent 
high beta

• System is always 
static

• Assumptions for 
FN theory always 
fulfilled

• System is always 
static

• Multiple emitters, 
possibly affecting 
each other

• Assumptions for FN 
theory always 
fulfilled

Nottingham effect – significant contribution to emitter heating 
and to the dynamic behavior 
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Simulated systems

• Coupled electric, mechanical, thermal interactions
– Electric field deforms sample and  causes emission currents
– Emission currents lead to current density distribution in the 

sample
– Material heating due to the electric currents
– Electric and thermal conductivity temperature and size 

dependent
– (Deformed) sample causes local field enhancement

• Dc El. field ramped up to 14 000 MV/m
• Comsol Multiphysics
• Nonlinear Structural Materials Module

— AC/DC module
• HELMOD (Combined Electrodynamics, Molecular 

dynamics)
• LAMMPS
• Kimocs (by Ville Jansson)

• Simulated materials: Copper
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The emission currents  

• Thermionic emission: high 
temperature, low field

• Field emission: low temperature, 
high field

• Combined effects : general 
thermal field equation:

General Thermal Field model - Simulations of emission currents over large surfaces

Special interest:
Intermediate region where thermal 

contribution can be significant K. L. Jensen, J. Appl. Phys. (2007)
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The Nottingham effect

• Electrons emitted may either cool or 
heat (depends on the energy) the 
metal surface.

• The Nottingham effect is 
characterized by the average energy 
difference from Fermi energy of the 
emitted electrons:
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Heating and emission currents

• Heat equation in steady state
• Fully coupled currents and temperature
• Emission currents concentrated to the 

top of the tip
• Nottingham effect included in thermal 

modelling

Local emission currents – connection to the experiment

Emission 
current density

• Size dependence of electric and thermal 
conductivity

• Conductivity in nanoscale emitters is 
significantly decreased (more than 10x for 
sub-nanometer tip)

• Knudsen number to characterizes nanoscale 
size effects

• Wiedemann-Franz law for thermal 
conductivity

• Optionally, temperature dependence in 
finite size effects
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V. Zadin, University of Tartu                                                                                          MiniMeVArc 2016



• We can see different 
surface modifications 
leading to small β
– Large β is needed 

• Multiplication of field 
enhancement factors
– Can explain observed high 

beta values

• Incorporates surface 
roughness 

• r_1/r_2<0.1 is needed to 
observe significant 
influence 

r_2

r_1

Static behavior of single emitter –
sensitivity to surface roughness

Max. enhancement Reference sim.
E0=100 MV/mE0=100 MV/m
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Influence of dynamic surface 
modification
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• Comparison of static (reference) and 
dynamic emitters
• Static emitter does not change the 

shape during simulation
• Dynamic emitter deforms 

elastoplastically

Direct calculation 
from simulation

From FN plot

Beta from static tip 18 22

Beta from dynamic tip 18-33 11.5

γ - slope

• Beta decreases 2-3 times during dynamic 
deformation of emitter

• Instead of growing emitters, we have 
decreasing emitters?

• Evaporation of surface protrusions?
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Influence of temperature –
FN plot

• Simulation of single emitter

– Fully coupled currents, temperature and 
external field

– Emission current is integrated over whole 
surface

• Taller emitters demonstrate smaller thermal 
effects 
– high local E is reached faster

– Thermal effects influence lower applied fields

• FN equation assumes static system 

– Thermal effects introduce a dynamic 
component

• Problem – effect remains in low current 
region

• Possible use – allows us to estimate the 
actual size of the emitter?
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Selective heating of the tips

• Simulation of two field emitters
– Emitter 1 – height H fixed

– Emitter 2 – height changed from 0.1H to 1H

• Ramping of the el. field

• Only the highest tip emits currents

• Significant emission from smaller tip 
started, when its height was 85%-90% 
of the largest tip height

Tip behavior under the el. field:
• only the highest tips start to emit the 

current, when the field is turned on
• longest tips heat, melt/vaporize, until 

they shorten to the height of the smaller 
tips

• finally, all the emitters should have equal 
height

Temperature of the tips, relative height 
0.75
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Electric field distribution due to 
interacting emitters

• Emission current sensitivity to 
the applied field

• Local interactions on surface 
can have significant effect to 
the breakdowns

• Small emitter „captures“ part of the 
field from large emitter

• Smaller emitter is located in the low 
field region, created by tall emitter
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Interaction of emitters at 
constant field

• Electric field and emission current density 
at constant external field (500 MV/m)

• Emitters have equal aspect ratio and 
shape, but different scale (0.5x scaling)
– Equal emission current density expected

• Close emitters act as single one

• The field enhancement factor of smaller tip 
is affected up to the Tip separating 
distances 30-40 nm – 6-8 times of the 
height of the largest tip

• The emission current densities from both 
tips are affected up to distances between 
the tips 60-70 nm – more than 10 times 
the height of the larger tip

• The emission current from the smaller tip 
is reduced 2 times if, the distance between 
the tips is 20 nm (4 times the height of 
larger tip)
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Forest of emitters – the temperature 
distribution

• H1=(2, 4, 6, 8) nm, H2=H1/2

• d1= 1 nm and d2=d1/2

• Distance 5 to 30

• Geometry scaling 1, 5,10 and 100

• Tall tip controls the emission currents

• If tall tip is destroyed, emission follows 
from equivalents smaller ones leading to 
consecutive breakdowns
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In current figures scale=10
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Influence of Nottingham 
effect I

• Nottingham effect provides 
significant additional heating

• Joule heating only provides 
a limiting case information

• Smaller emitters can be 
melted

– Reduces the cooling effects of 
bulk material • Aspect ratio of emitter is constant

• Radius height is changing
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Influence of Nottingham effect II

Ability to melt both, larger and smaller tips!

• Reduces aspect ratio of emitters that 
can be molten by applied fields

• Significant influence in case of conical 
emitters!
• Conical, low aspect ratio emitters 

as possible sources of neutrals as 
well

• Constant radius, variable height 
calculations

• Influence of the emitter shape – conical 
emitters vs. straight ones 
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Evaporated atoms versus 
applied field 

• Estimation of number of neutrals in 
vacuum based on emitter 
temperature 

• Allows to detect size and number of 
emitters, needed for a BD

• Molten material estimated by 
integrating emitters volume with 
T>Tmelt

• Melting temperature of 
nanoparticles has significant size 
dependence
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Combined current from all 
emitters

• Currents from all 
emitters are added

• Only one emitter is 
considered from each 
geometrical 
configuration

• Interactions between 
the emitters are not 
considered

• Current from emitter 
stops, if melting 
temperature is reached

Based on integrated current and corresponding el. 
field range, Fowler-Nordheim plot is constructed 
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• Dynamic effects of surface change due to 
the melting of emitters

• Current calculations assume 1 emitter from 
each set of geometrical parameters
• Some geometries may be unphysical
• More emitters than 1 from different 

types may be present
• Statistical distribution is needed for 

different emitters!
• Statistics of the emitter types can be 

obtained by using data fitting with 
optimization methods (genetic algorithms)
• Comparison with emission current 

measurements
• Comparison with breakdown rate 

measurements
• Comparison with stochastic 

breakdown estimation models
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γ - slope

Influence to the field 
enhancement factor

V. Zadin, University of Tartu                                                                                          MiniMeVArc 2016



Conclusions

• FEM is viable and flexible tool for studying 
surface modification phenomena

• Nottingham effect provides significant 
additional heating

• Dynamic behavior of surface due to the 
melting of emitters has capacity to influence 
the field enhancement factor
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Thank you for your attention!
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