

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Thermo-electrical simulations of field emitters - the influence of Nottingham effect

<u>V. Zadin</u>, , K. Eimre, V. Jansson, S. Vigonski, M. Veske, A. Aabloo, F. Djurabekova

FEM simulations of field emitters

Electric field over surface: Emission currents Surface stress

- Surface stress due to high electric field
- Emission currents

Subsurface voids, precipitates as stress concentrators

Bulk simulations: Multiscaling, coupling to other methods kMC, MD, FEM Strongest/weakest nanostructure estimation

Material Surface Simulations: Field emitters Surface reconstruction

- High aspect ratio tips
- Field emitters

Dislocations and plastic deformation as source of emitters

V. Zadin, University of Tartu

Main factors affecting the emission currents

Possible reasons behind high beta values

Behavior of single emitter

- System is always static
- Assumptions for FN theory always fulfilled

Behavior of system of emitters

- System is always static
- Multiple emitters, possibly affecting each other
- Assumptions for FN theory always fulfilled

Integral behavior and surface dynamics

- Static system in all local configurations
- Changes in system in time or during field ramping
- Possible mechanisms leading to apparent high beta

Nottingham effect – significant contribution to emitter heating and to the dynamic behavior

Simulated systems

- Coupled electric, mechanical, thermal interactions
 - Electric field deforms sample and causes emission currents
 - Emission currents lead to current density distribution in the sample
 - Material heating due to the electric currents
 - Electric and thermal conductivity temperature and size dependent
 - (Deformed) sample causes local field enhancement
- Dc El. field ramped up to 14 000 MV/m
- Comsol Multiphysics
- Nonlinear Structural Materials Module
 - AC/DC module
- HELMOD (Combined Electrodynamics, Molecular dynamics)
- LAMMPS
- Kimocs (by Ville Jansson)
- Simulated materials: Copper

V. Zadin, University of Tartu

h

$$r = (2, 4, 8, 16)nm$$
$$h/r = (4, 8, 12, 16, 20)$$
$$r_b/r = (0.2, 0.5, 1.0, 4.0)$$

The emission currents

General Thermal Field model - Simulations of emission currents over large surfaces

Special interest: Intermediate region where thermal contribution can be significant

V. Zadin, University of Tartu

- Thermionic emission: high temperature, low field
- Field emission: low temperature, high field
- Combined effects : general thermal field equation:

$$J_{\text{GTF}}(F,T) = A_{\text{RLD}}T^2 N\left(\frac{\beta_T}{\beta_F}, \beta_F(E_o - \mu)\right)$$
$$N(n,s) \approx n^2 \Sigma\left(\frac{1}{n}\right)e^{-s} + \Sigma(n)e^{-ns},$$

K. L. Jensen, J. Appl. Phys. (2007)

The Nottingham effect

- Electrons emitted may either cool or heat (depends on the energy) the metal surface.
- The Nottingham effect is characterized by the average energy difference from Fermi energy of the emitted electrons:

$$\langle \Delta E \rangle = \frac{q \int (E - \mu) D(E, F) N(E, T) dE}{j(F, T)}$$

$$\langle \Delta E \rangle > 0 \rightarrow \text{cooling}$$

 $\langle \Delta E \rangle < 0 \rightarrow \text{heating}$

 $\varphi_q = \langle \Delta E \rangle \frac{j(F,T)}{q}$

V. Zadin, University of Tartu

Heating and emission currents

Local emission currents - connection to the experiment

- Heat equation in steady state
- Fully coupled currents and temperature
- Emission currents concentrated to the top of the tip
- Nottingham effect included in thermal modelling

V. Zadin, University of Tartu

F(Kn) $\overline{\sigma_w = F(Kn) \cdot \sigma_b}$ $\overline{\kappa_w = F(Kn) \cdot \kappa_b}$ $\overline{\kappa_w = F(Kn) \cdot \kappa_b}$ $\overline{\kappa_w = \frac{L_{free}}{d}}$ $\overline{\kappa_w = \frac{L_{free}}{d}}$

- Size dependence of electric and thermal conductivity
- Conductivity in nanoscale emitters is significantly decreased (more than 10x for sub-nanometer tip)
- Knudsen number to characterizes nanoscale size effects
- Wiedemann-Franz law for thermal conductivity
- Optionally, temperature dependence in finite size effects MiniMeVArc 2016

Static behavior of single emitter – sensitivity to surface roughness

-0.1

0

0.1

▼ 4.01

-2

- We can see different surface modifications leading to small β
 - Large β is needed
- Multiplication of field enhancement factors
 - Can explain observed high beta values
- Incorporates surface roughness
- r 1/r 2<0.1 is needed to observe significant influence V. Zadin, University of Tartu

MiniMeVArc 2016

250

200

150

100

50

2 ▼0.01

Influence of dynamic surface modification

- Comparison of static (reference) and dynamic emitters
 - Static emitter does not change the shape during simulation
 - Dynamic emitter deforms elastoplastically ______

	Direct calculation from simulation	From FN plot
Beta from static tip	18	22
Beta from dynamic tip	18-33	11.5

- Beta decreases 2-3 times during dynamic deformation of emitter
- Instead of growing emitters, we have decreasing emitters?
- Evaporation of surface protrusions?

Influence of temperature – FN plot

- Simulation of single emitter
 - Fully coupled currents, temperature and external field
 - Emission current is integrated over whole surface
- Taller emitters demonstrate smaller thermal effects
 - high local *E* is reached faster
 - Thermal effects influence lower applied fields
- FN equation assumes static system
 - Thermal effects introduce a dynamic component
- Problem effect remains in low current region
- Possible use allows us to estimate the actual size of the emitter?

Selective heating of the tips

- Simulation of two field emitters
 - Emitter 1 height H fixed
 - Emitter 2 height changed from 0.1H to 1H
- Ramping of the el. field
- Only the highest tip emits currents
- Significant emission from smaller tip started, when its height was 85%-90% of the largest tip height

Tip behavior under the el. field:

- only the highest tips start to emit the current, when the field is turned on
- longest tips heat, melt/vaporize, until they shorten to the height of the smaller tips
- finally, all the emitters should have equal height
 MiniMeVArc 2016

Electric field distribution due to interacting emitters

2000

1500

- Emission current sensitivity to the applied field
- Local interactions on surface can have significant effect to the breakdowns

- Small emitter "captures" part of the 3000 field from large emitter 2500
 - Smaller emitter is located in the low field region, created by tall emitter

Interaction of emitters at constant field

Normalized current

- Electric field and emission current density at constant external field (500 MV/m)
- Emitters have equal aspect ratio and shape, but different scale (0.5x scaling)
 - Equal emission current density expected
- Close emitters act as single one
- The field enhancement factor of smaller tip is affected up to the Tip separating distances 30-40 nm – 6-8 times of the height of the largest tip
- The emission current densities from both tips are affected up to distances between the tips 60-70 nm – more than 10 times the height of the larger tip
- The emission current from the smaller tip is reduced 2 times if, the distance between the tips is 20 nm (4 times the height of larger tip)

V. Zadin, University of Tartu

Forest of emitters – the temperature distribution In current figures scale=10

- H1=(2, 4, 6, 8) nm, H2=H1/2
- d1= 1 nm and d2=d1/2
- Distance 5 to 30
- Geometry scaling 1, 5,10 and 100
- Tall tip controls the emission currents
- If tall tip is destroyed, emission follows from equivalents smaller ones leading to consecutive breakdowns

MiniMeVArc 2016

Influence of Nottingham effect I

- Nottingham effect provides significant additional heating
- Joule heating only provides a limiting case information
- Smaller emitters can be melted
 - Reduces the cooling effects of bulk material

- Aspect ratio of emitter is constant
- Radius height is changing

Influence of Nottingham effect II

- Reduces aspect ratio of emitters that can be molten by applied fields
- Significant influence in case of conical emitters!
 - Conical, low aspect ratio emitters as possible sources of neutrals as well

Constant radius, variable height calculations

 Influence of the emitter shape – conical emitters vs. straight ones

Ability to melt both, larger and smaller tips!

MiniMeVArc 2016

Evaporated atoms versus applied field

- Molten material estimated by integrating emitters volume with T>T_{melt}
- Melting temperature of nanoparticles has significant size dependence

V. Zadin, University of Tartu

- Estimation of number of neutrals in vacuum based on emitter temperature
- Allows to detect size and number of emitters, needed for a BD

Combined current from all emitters

Based on integrated current and corresponding el. field range, Fowler-Nordheim plot is constructed

- Currents from all emitters are added
- Only one emitter is considered from each geometrical configuration
- Interactions between the emitters are not considered
- Current from emitter stops, if melting temperature is reached

Influence to the field enhancement factor

- Dynamic effects of surface change due to the melting of emitters
- Current calculations assume 1 emitter from each set of geometrical parameters
 - Some geometries may be unphysical
 - More emitters than 1 from different types may be present
 - Statistical distribution is needed for different emitters!

Statistics of the emitter types can be obtained by using data fitting with optimization methods (genetic algorithms)

- Comparison with emission current measurements
- Comparison with breakdown rate measurements
- Comparison with stochastic breakdown estimation models

Conclusions

- FEM is viable and flexible tool for studying surface modification phenomena
- Nottingham effect provides significant additional heating
- Dynamic behavior of surface due to the melting of emitters has capacity to influence the field enhancement factor

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Thank you for your attention!