BFPP Losses during 2015 Heavy Ion Operation

M. Schaumann

Acknowledgments: J.Jowett, T.Mertens, A.Lechner

ColUSM 04/12/2015
• Introduction
• Losses around the ring (2015 vs. 2011)
• Bumps and losses observed in each IP
 • IP1
 • IP5 – incl. test of increased amplitude 11L5
 • IP2
 • IP8
Secondary Beams Produced in Pb-Pb Collisions

Bound-free pair production (BFPP)

\[
208 \text{Pb}^{82+} + 208 \text{Pb}^{82+} \rightarrow 208 \text{Pb}^{82+} + 208 \text{Pb}^{81+} + e^+
\]

and **electromagnetic dissociation (EMD)**

\[
208 \text{Pb}^{82+} + 208 \text{Pb}^{82+} \rightarrow 208 \text{Pb}^{82+} + 207 \text{Pb}^{82+} + n
\]

have large interaction cross-sections in Pb-Pb collisions and are the main contribution to fast Pb-Pb burn-off (hadronic cross-section is 8b):

\[
\sigma_{c,\text{tot}}(3.5Z \text{ TeV}) = \sigma_{c,\text{BFPP}} + \sigma_{c,\text{EMD}} + \sigma_{c,\text{hadron}}
\]

\[
\approx 253.6 \text{ b} + 195.6 \text{ b}
\]
Secondary Beams Produced in Pb-Pb Collisions

These reactions change the charge-to-mass ratio of the ions, which changes bending in (main) dipoles: \(B \rho = p / q \)

Intense secondary beams are produced that impact in a superconducting magnet downstream from the IP.

\[\Rightarrow \text{Luminosity limit, if deposited power exceeds quench limit.} \]
Risk Mitigation with Orbit Bumps – Test 2011

Orbit bumps are now used to move the secondary beam losses into the empty cryostats around IP1 and 5 in order to reduce risk of quench.

Data from 2011 feasibility test.

BFPP1 beam impact position is moved further downstream.
Loss Pattern around the Ring, 4 (3) colliding IPs
IP1
Correctors used for bumps

ACBCH7.R1B1, ACBH9.R1B1, ACBH13.R1B1

T. Mertens
BFPP Losses around IP1

Bump Correctors: 7-9-13
Bump Amplitude: -3.2mm (L) / -2.75mm (R)

The BFPP bumps move the losses deep into the empty cryostat
⇒ Losses in last BLM on MB are at least a few 10 times smaller

BFPP:
- BLMQI.08L1.B2E30_MQML

BFPP:
- BLMEI.11R1.B1E10_LEHR
- BLMQI.08R1.B1E10_MQML
The BLM signals suggest that the situation on both sides is similar to the blue simulation.
IR1/5: shifting the BFPP loss location to the connection cryostat

Run 2 optics (assuming $\beta^* = 80 \text{ cm}$):

Run 2 optics (assuming $\beta^* = 80 \text{ cm}$):

Some uncertainty on the position ($\sim 1-2 \text{ m}$) due to beam screen tolerances etc.
BFPP Losses around IP5

Bump Correctors: 7-9-13
Bump Amplitude: -3.0mm (L) / -2.6mm (R)

The right BFPP bump moves the losses into the empty cryostat. Losses are still in MB on the left side.
The BLM signals suggest that

- **right of IP5** the beam impacts as shown in blue simulation.
- **left of IP5** the impact seems to be more similar to the red simulation, but one BLM further downstream.
Increase Bump 11L5 to move loss peak into cryostat

-3mm bump

Current in RCBCH9.L5

CMS Luminosity

BLMEI.11L5.B2E30_MBA

BLMEI.11L5.B2E24_MBA

BLMEI.11L5.B2E21_LEFL

BLMEI.11L5.B2E22_LEFL

Maximum moved: 30_MBA to 22_LEFL

-5mm bump

Left-Right Asymmetry: Bump 11R5 has -2.6mm amplitude for similar loss pattern
Comparison of approximated BLM signals in 2011 and 2015

The asymmetry seems to have been there already in 2011 ➔ displaced beam-pipe?
IP2
Correctors used for bumps

8_10_12

T. Mertens
IP2: Spreading losses over 2 cells

2mm bump moves losses from cell 10 to 11

MB.B10R2.B1

MB.C12R2.B1

T. Mertens
IP2 : Spreading losses over 2 cells

Bump Correctors: 8-10-12
Bump Amplitude: -3mm

The left bump is not large enough to move losses to cell 12.

Initial loss location 10R2 was partially moved to 12R2.
IP8
BFPP Losses around IP8

No BFPP Bumps

Small loss peaks appear as well around IP8 in similar locations as in IP2.
Conclusion

• BFPP bumps are efficient on both sides of IP1, right of IP5 and right of IP2.

• With the currently validated maximum amplitude, the loss location lies still inside MB.11L5.
 • An amplitude of -5mm (currently -3mm) is necessary to move the losses into the empty cryostat left of IP5.
 • This left-right asymmetry is as well observed in the 2011 data.

• Losses to the right side of IP1/5 are already well predicted by simulations.
• Impact positions on left side seem to be systematically different than calculated.
THANK YOU
FOR YOUR ATTENTION
Backup
Particle Losses around the Ring

Data from 2011

Before collisions

IP1, IP2, IP5 colliding

M. Schaumann, ColUSM
BLM Losses close to the IP5

BLM signals during *van der Meer (VdM) Scans* in IP5 in 2011

White spaces are not covered by BLMs

Luminosity Evolution