Fixed Order Jets for Run II

James Currie (IPPP Durham)

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

Jets at the LHC

Ubiquitous and accurately measured at the LHC

• ~1% JES corresponds to <10% uncertainty on single inclusive x-sec

Provides a rigorous test of QCD across a huge range of kinematic variables

Jets and PDFs

LHC is mainly a gluon collider but gluon PDF is not well known:

- LHC jets probe a wide range of x
- gluon PDF directly sensitive to jet data, especially at large x
- would like to consistently include NNLO jet data in NNLO PDF fits without using kinematically limited approximations

Jets and α_s

Can use the single inclusive jet cross section to determine [CMS-PAS-SMP-12-028]:

• $\alpha_s(M_Z)$ and running coupling from single experiment

model independent probe of new physics

Why NNLO?

Why NNLO?

NNLO is first order which:

- gives useful estimate of theoretical scale error
- contains all elements of physics in the process
- can begin to probe NP effects
- allows consistent use of NNLO PDFs

Should be the Run II standard wherever possible

• reduces (over) dependence on approximations

NNLO Run II Marketplace

	local subtraction	analytic	pp collisions	final-state jets	scalable final state
Antenna Subtraction	$ + \frac{1}{\epsilon^n} $				
STRIPPER		X			
q Subtraction					
N-Jettiness					

Slicing Techniques

Extended to NNLO by clever new slicing parameters

Define a kinematic cut on the phase space:

- evaluate cross section above cut with NLO techniques
- cross section below cut approximated by resummation inspired function

Prime examples are q_T [Catani, Grazzini] and N-Jettiness [Bougezhal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh]

- need to check cut independence
- already several implementations H+j, W+j, Z+j [Bougezhal, Focke, Liu, Petriello, Campbell, Ellis, Giele]
- interesting to compare this very new technique with other methods

Sector Improved Numerical

Antenna Subtraction

Generalizes dipole subtraction to NNLO with antenna functions

Quark-antiquark:

Antenna Subtraction

Unphysical intermediate quantities are divergent

• need to regulate with RR, RV and VV subtraction terms

$$d\sigma_{ab,NNLO} = \int_{\Phi_{m+2}} d\sigma_{ab,NNLO}^{RR} + \int_{\Phi_{m+1}} d\sigma_{ab,NNLO}^{RV} + d\sigma_{ab,NNLO}^{MF,1} + \int_{\Phi_m} d\sigma_{ab,NNLO}^{VV} + d\sigma_{ab,NNLO}^{MF,2}$$

Antenna Subtraction

Unphysical intermediate quantities are divergent

• need to regulate with RR, RV and VV subtraction terms

$$d\sigma_{ab,NNLO} = \int_{\Phi_{m+2}} \left[d\sigma_{ab,NNLO}^{RR} - d\sigma_{ab,NNLO}^{S} \right] \\ + \int_{\Phi_{m+1}} \left[d\sigma_{ab,NNLO}^{RV} - d\sigma_{ab,NNLO}^{T} \right] \\ + \int_{\Phi_{m}} \left[d\sigma_{ab,NNLO}^{VV} - d\sigma_{ab,NNLO}^{U} \right]$$

Unintegrated antennae mimic divergences of RR, RV

$$A_4^0(q, g, g, \bar{q}) \to P_{qgg}^0, \ S_{ijkl}^0, \ P_{gg}^0, \ P_{qg}^0, \ S_{ijk}^0 \dots$$

Integrated antennae match pole structure of RV, VV

$$\mathcal{A}_3^0(s_{ij}) = \boldsymbol{I}_{q\bar{q}}^{(1)}(s_{ij},\epsilon) + \mathcal{O}(\epsilon^0)$$

Result is IR finite cross sections:

- analytic pole cancellation
- can be used for an arbitrary number of legs
- implemented in several calculations, e⁺e⁻->3j, H+j, Z+j, 2j
 [Chen, Currie, Gehrmann, Gehrmann-de Ridder, Glover, Huss, Jaquier, Morgan, Pires, Wells]

Dijets

 $pp \Rightarrow 2j$ at NNLO is a complicated calculation:

- many crossings and colour factors to consider
- up to four massless partons in the final state means a large number of (overlapping) unresolved limits

Start by considering:

- what are the most important channels?
- what are the most important colour factors in each channel?

Channels

At low to moderate p_T the gluonic initial-states (gg+qg) dominate

At high p_T quark scattering becomes important

In this talk I will focus on gg+qg; qq results in preparation

Results Part I

The following results are for:

- gluons only subprocess
- leading colour contribution
- accept jets with $p_T > 20 \text{ GeV}$
- rapidity cut |y| < 4.4
- scale $\mu = \mu_F = p_{T1}$
- anti- k_T jet algorithm R=0.7
- MSTW2008nnlo

15-25% NNLO correction relative to gluons only NLO

Results Part II

In recent runs make a number of changes:

- scale $\mu = \mu_F = p_T$, not p_{T1}
- NNPDF3.0_as_0118
- R=0.4
- normalize K-factors to full NLO
- include more channels and colour factors
 - N² corrections to gg
 - N N_F corrections to gg
 - N² corrections to qg
- $\sqrt{s}=13~{\rm TeV}$

-9% to +1% NNLO correction relative to full NLO

Conclusions

Predictions look very different from old results:

- new scale choice p_T
- new channels: N $N_{\rm F}\,gg$ and $N^2\,qg$
- run II energies, smaller R
- K-factors now quoted with reference to full NLO

New features to be added soon:

- N N_F correction to qg + N_F^2 correction to gg and qg
- N^2 , N N_F, N_F² corrections to qq channel high pT jets

These new features will change the results again; then we can talk about physics!

Summary

- Several impressive tools available for NNLO jet studies
- Phenomenology is moving very quickly
- Focus is shifting from developing techniques to exploiting power of NNLO calculations
- Computationally demanding, need to think about how best to use them
- bring on the Run II data!