Solid State Physics and Perturbed Angular Correlations at ISOLDE new tools, new ideas, new people

Juliana Schell

Universität des Saarlandes -> Universität Duisburg Essen & ISOLDE-CERN

SSP and OF RADIOACTIVE BEAMS

Presenting a review of today's offer at:

Nuclear physics and Astrophysics

Material's science

- **Bio-physics**
 - Life sciences
- What is WORKING and NEW...
 - ► What is **USEFUL** and ... **USABLE**
 - ➢ Who are the USERS ...
 - ➤ Where …
- ... aiming to work better in 10 15 years !

KEY Features for Sustainability of RIB Applications

Different isotopes and decay particles can adapt to tumor or tumor cell killing.

ISOL (ISOLDE EURISOL)

Isotope Separator ON-LINE – ISOL:

Such an instrument is essentially a target, ion source and an electromagnetic mass analyzer coupled in series. The apparatus is aid to be on-line when the material analyzed is directly the target of a nuclear bombardment, where reaction products of interest formed during the irradiation are slowed down and stopped in the system. *H. Ravn and B.Allardyce, 1989, Treatise on heavy ion science*

Isotope Separator On-Line ISOL - facilities 1967

ISOLDE

1967

Radioactive Ion Beam – facilities Worldwide 2013

Existing and in preparation

After B. Sherill

ISOLDE: CERN's longest running facility

The ISOL Process

Fast, Efficient, Universal and Selective!

Target handling

Ion energy: 20-60keV

robots

199192

RILIS (Resonant Ionisation Laser Ion Source)

The atomic line spectra are the element's fingerprint

RILIS in action

20 mSv/y – A workers

SSP @ ISOLDE: Diverse community

THINKING Materials and Molecular Properties

dealing with mass, electromagnetism, many body systems and scaling Atomic-like information is the aim !

- Semiconductor Physics (Si, Oxides, organic compounds)
 Multi- ferroic- magnetic
 - → Nanomaterials (geometry, downsizing and integration)
 - → Surfaces and interfaces (bulk properties are modified)
 - → Soft matter : graphen,
 - → Bio / Molecular chemistry and physics

→ THINKING Life Sciences <</p>

optimizing delivering and range of deposition of highly concentration of energy upon radioactive decay into the living body or cell of interest.
 Enlarging the choices of radioisotopes is the aim !
 ◆ NEW isotopes and decay modes for diagnosis and treatments.

RECENT DEVELOPMENTS

Material's Science Applications

a commitment for the future based on facts !

On-line diffusion chamber at ISOLDE

Understanding Diffusion and self diffusion ... On-line ! **IS489**

⁶¹Cu (3.3h) diffusion in Cd saturated CdTe

Isotope	t _{1/2}	Detection
³⁸ CI	37.3 min	β- _{4800keV} ; γ _{2168keV}
¹¹ C	20.38 min	β+; γ _{511keV}
¹³ N	9.96 min	β+; γ _{511keV}
(¹⁵ O)	122 s	β+; γ _{511keV}
²⁹ AI	6.6 min	γ _{1273ke} v

Unknown Aluminum self diffusion

⁽T.G.Stoebe et al., Phys. Rev. 166 (1968) 621)

- Single stable Al isotope: no SIMS measurements Unknown activation energy of self diffusion in Al
 Unknown role of vacancies, di-vacancies at different temperatures.
- Unknown Al diffusion in Al-based compounds

From the Avogadro Project : define Kg in terms of number of Si atoms...

LASER

HeCd (3,8 eV)

Nd:YAG (2,3 nm)

Diode (1,9 nm)

He-Bathcryostat (1,5 – 300 K) Closed cycle

Cryostat

Scientific American 295, 102 - 109 (2006)

Photo Luminescence – PL **Deep Level Transient** Spectroscopy (DLTS)

Monochromator

Focus: 0,75 m Gratings: 150 – 1800 l/mm **Detectors**

CCD-camera (1,1 - 6,2 eV)

Ge-Diode (0,7 - 1,5 eV)

experimental tool for studying electrically active defects and concentration in semiconductors.

... to measure optical properties of mono-isotopic Si!

15 October 2011

JOURNAL OF APPLIED PHYSICS

VOLUME NUMBER

Photoluminescence of deep defects involving transition metals in Si: New insights from highly enriched ²⁸Si by M. Steger, A. Yang, T. Sekiguchi et al.

AIP

777meV feature, now shown to include Pt and 4 Cu atoms!

Emission Channeling of decay particles, on single crystals $(\beta^2, \beta^4, c.e., \alpha)$

21

Hyperfine Interactions with Mossbauer spectroscopy

Incoming 40-60 keV ⁵⁷Mn⁺ beam Intensity: ~2×10^{8 57}Mn⁺/cm²

Mössbauer drive with resonance detector

Development of 57Mn beam in late 1990s (with laser ionisation) brought about a new era in Mossbauer experiments at ISOLDE.

 Very clean, intense beam of ⁵⁷Mn (>3x10⁸ ions sec⁻¹)

- Allows collection of single
 Mossbauer spectrum in ~ 3 mins.
- Able to collect many hundreds over course of a 3 day run.
- Allows low concentrations of probe atoms to be used (~10⁻⁴At%)

Fe: ZnO a ferromagnetic semiconductor? (nope!)

6 fold spectrum: characteristic of magnetic structure (at room temperature!!!).

(100 region of the second sec

DOGRA, R.; CARBONARI, A. W.; MERCURIO, M. E.; CORDEIRO, M. R.; RAMOS, J. M.; SAXENA, R. N.

Search for Room Temperature Ferromagnetism in Low-Concentration Transition Metal Doped ZnO Nanocrystalline Powders Using a Microscopic Technique.

IEEE Transactions on Magnetics, v. 46, p. 1780-1783, 2010

After high-dose implantations, precipitates of Fe-III are formed. These form clusters yielding misleading information about the nature of magnetism in ZnO (as reported by many groups over the last number of years).

Gunnlaugsson et al APL 100 042109 2012

PAC results: no DMS at RT!!!!

PAC reveals the presence of two different EFGs for each case: ^{111m}Cd(¹¹¹Cd), ¹⁸¹Hf(¹⁸¹Ta), ¹¹⁷Cd(¹¹⁷In) and ¹¹¹In(¹¹¹Cd), which are assigned to different local environments.

We stress the particular cases of 181 Hf(181 Ta) and 111 In(111 Cd), where a major fraction, f1 = 55-80 %, of probe atoms was assigned to substitutional Sn/Ti sites in the Sn/TiO₆ octahedral [Schell, J., CERN-THESIS-2015-229].

Universität Duisburg Essen – April -2016 Dr. Juliana Schell

RECENT DEVELOPMENTS

Bio-physics applications

a commitment for the future based on facts !

Perturbed angular correlation (PAC) Spectroscopy applied to **BIOPHYSICS**

 6.180° spectra and 24.90° spectra

26

ТІМІ

^{111m}Cd PAC (48M) - De novo designed heavy metal Ion binding proteins: ns dynamics **IS488**

In vivo experiments Hg(II) binding to barley 199mHg PAC (42M) IS488

- 5-7 days-old plants
- Plant inserted into test tube.
- Fast uptake of Hg(II) (<1h)
- Bound to large molecules, similarities to HgS₂ compounds

RECENT DEVELOPMENTS

Life Science applications

a commitment for the future based on facts !

Radionuclides for diagnosis and therapy

Immunology approach

Multidisciplinary collaboration to fight cancer

Structural biology

chemistry

and radiochemistry

Radionuclides for therapy

Radio- nuclide	Half- life	E mean (keV)	Eγ (B.R.) (keV)	Range			
Y-90	64 h	934 β	-	12 mm	Establishe		
I-131	8 days	182 β	364 (82%)	3 mm	isotopes		
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm	Emerging isotopes		
localized							

radiation

Production of non-carrier-added ¹⁷⁷Lu

Irradiation in high flux reactor (e.g. ILL Grenoble), then chemical separation of ¹⁷⁷Lu from stable Yb.

Male 36 years of age Small cell pancreatic neuroendocrine tumour Liver metastases Ki-67 index 10-15% (liver biopsy)

4 cycles with ¹⁷⁷Luoctreotate and capecitabine

Partial remission

Roelf Valkema, EANM-2008.

Radionuclides for therapy

Radio- nuclide	Half- life	E mean (keV)	Eγ (B.R.) (keV)	Range	cross-	fire
Y-90	64 h	934 β	-	12 mm		Estab-
I-131	8 days	182 β	364 (82%)	3 mm		isotopes
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm		Emerging isotopes
Tb-161	7 days	154 β 5, 17, 40 e ⁻	75 (10%)	2 mm 1-30 µm		R&D
Tb-149	4.1 h	3967 α	165,	25 µm		isotopes:
Ge-71	11 days	8 e⁻	-	1.7 µm		limited!
Er-165	10.3 h	5.3 e⁻	-	0.6 µm	localiz	ed

Modern, better targeted vectors require shorter-range radiation ⇒ need for adequate (R&D) radioisotope supply.

Radioisotopes for targeted alpha therapy

Radio- nuclide	Half-life (h)	Advantage	Problem			
Tb-149	4.12	Known (bio)chemistry	Availability			
Pb-212	10.6	Availability (recycled from U-fuel ²²⁸ Th)	Release of daughter?			
Bi-212	1.01	Known (bio)chemistry Availability	Short half-life			
Bi-213	0.76	Known (bio)chemistry	Short half-life Availability			
At-211	7.22	Half-life	Challenging (bio)chemistry			
Ra-223	274	Half-life Availability	Only for bone metastases (similar chemistry to Ca)			
Ac-225	240	Half-life Known (bio)chemistry	Release of daughters? Availability			

Terbium: a unique element for nuclear medicine

Dy 150 7.2 m	Dy 151 17 m	Dy 152 2.4 h	Dy 153 6.29 h	Dy 154 3.0 · 10 ^e a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889	Dy 162 25.475
e: p* a: 4:23 7:387	e: a 4.07 7 386; 49; 546; 176 g: m	4 m 3.63 1/257 0	κ; β* α 3.46 γ 81: 214; 100: 254	a 2.87	⁶ β ⁺ 0.9; 1.1 γ227	0.33 No.u <0.009	y 326	ar 33 m _{0. 0} <0.006	e 758; e 9 8000	ir 60 ™n, ti ≪0.0003	σ600 ⊎n.α<1E-6	et 170
Tb 149	Tb 150	Tb 151 25 s 17.6 h	Tb 152 42 m 17.5 h	Tb 153 2.34 d	Tb 154	Tb 155 5.32 d	Tb 156	Tb 157 99 a	Tb 158	Tb 159 100	Tb 160 72.3 d 8-0.6 17	Tb 161 6.90 d
a 3.90 p* 1.8 1.706; 1.352; 165. 365	650; + 3.49 627; 1630; 638. 691.	1000, 287, 2000, 287, 2011, 108	7344. 7344. 11. 271	212; 170; 110; 102; 83	947. y123: y123 1820, 944; 1274 129 640.	* γ 87; 105; 180; 262	y 50 p* 1222	* 7 (54) 9	Hy (110) H- 0 B 9 - 062, 00	ar 23.2	y 879; 299; 966 # 670	β ⁺ 0.5; 0.6 γ26; 49; 75
Gd 148 74.6 a	Gd 149 9.28 d	Gd 150 1.8 · 10 ^a a	Gd 151 120 d	Gd 152 0.20	Gd 153 239.47 d	Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18.48 h	Gd 160 21.86
α 3.183 σ 14000	s; a 3.016 y 150; 299; 347	a 2.72	e; a 2.60 7 154; 243; 175	1.1 · 10 ¹⁴ a α 2.14; σ 700 σ _{n, α} <0.007	* 797; 103; 70 # 20000 m. # 0.93	rī 60	ir 61000 irs. n 0.00008	σ−2.0	н 254000 Фл. н <0.05	#23	β [−] 1.0 γ 384: 58	σ1.5

CERN-MEDICIS:

Medical isotopes collected from ISOLDE

R. Catherall, M. Dias, T. Giles, Z. Lawson, S. Marzari, T. Stora (CERN)

Dr. Forni (**Clin. Carouge**), L. Vouga, Prof. P. Morel, Prof. L. Buehler, Prof. Y. Seimbille, Prof. O. Ratib (**HUG**, Geneva), Prof. D. Hanahan (**ISREC-EPFL**, Lausanne), Prof. J. Prior, Dr. F. Buchegger (**CHUV**, Lausanne), Prof M. Huyse, Prof. P. van Duppen (**Univ.**

Leuven), Prof. S. Lahiri (SINP, Kolkata)

Irradiation station commissioned with beam

Scole _1 n tempora 42m3 temporo Coffrage

The (potential) role of ISOL in nuclear medicine

- 1. Samples of R&D isotopes which are not commercially available or easily producible by other means.
- 2. Isotopes with ultimate specific activity for R&D, e.g. studies of efficacy versus specific activity.
- 3. Isotopes that are best produced by spallation (¹⁴⁹Tb,...).

Existing ISOL beams are sufficiently intense for preclinical studies, in certain cases even for clinical studies.

How to organize R&D with RIBs in nuclear medicine? Physicists are used to "travel to the isotopes", but isotopes must "travel to physicians and patients".

CONCLUSIONS

"SSP" of EXOCTIC radioactive isotopes

Specific areas are identified:

Life Sciences Materials Nuclear Chemistry...

The methods follow the needs with progressing quality...

Viability and Visibility of "Applications" depend at the long term from diversifying and optimizing RIB infrastructures with: Dedicated BEAM TIME and BEAM LINES Dedicated LABORATORY SPACE

...the future of "Applications" depend very much on the concept of the next generation of RIB facilities

Acknowledgments

ISOLDE Solid State Physics

SPONSORED BY THE

Federal Ministry of Education and Research

... to colleagues and collaborators!

- R. Vianden
- D. C. Lupascu
- M. Deicher
- A. Fenta
- H. Gunnlaugsson
- T. E. Molholt

- K. Johnston
- L. B. S. Hemmingsen
- U. Köster
- M. Kowaslka
- A. L. Lopes
- J.G.M. Correia

- M. Stachura
- T. Stora
- U. Wahl
- and The ISOLDE collaboration