KU LEUVEN

CERN MEDICIS facility for the production of medical research isotopes... et plus si affinité

Prof Dr Thomas Elias Cocolios Instituut voor Kern- en Stralingsfysica KU Leuven, Belgium

- Novel medical radioisotopes from ISOLDE
 - CERN MEDICIS
 - Exploring new opportunities

Research on novel medical radioisotopes from ISOLDE

KU LEUVEN

2

Nuclear vs Radiation Medicine

Radiation Medicine

- External source (e.g. gamma rays, protons)
- Non invasive
- ✦ Tuneable
- Accuracy affected by patient's motion
- Induces damage on its path
- Limited to local targets (e.g. tumour)

Nuclear vs Radiation Medicine

Nuclear Medicine

Targeted
Whole-body coverage
Avoids healthy cells

- Requires bespoke research for each case
- Kidney / liver intake

4

- Prolonged exposure passed the treatment

KU LEUVEN

Nuclear vs Radiation Medicine

Radiation Medicine

- External source (e.g. gamma rays, protons)
- Non invasive
- ✦ Tuneable
- Accuracy affected by patient's motion
- Induces damage on its path
- Limited to local targets (e.g. tumour)

Nuclear Medicine

5

- Whole-body coverage
- Avoids healthy cells

- Requires bespoke research for each case
- Kidney / liver intake
- Prolonged exposure passed the treatment

Radioisotopes for nuclear medicine

6

Radioisotopes are attached to biomolecules used to target specific receptors in the body to image active areas, identify cells, or treat cancer.

Medical radioisotopes have to answer many criteria:

- ➡ available (production)
- can be handled (half-life)
- high benefit / low toxicity (decay modes, branching ratios, half-life, purity)
- stable within the biomolecule

Imaging in Nuclear Medicine

7

SPECT

Single Photon Emission Computed Tomography

- Low-energy gamma ray spectroscopy
- Pb mask to guide orthogonal rays only
- Gantry rotating around the patient to reconstruct 3D image

Typical isotope: 99mTc

KU LEUVEN

Imaging in Nuclear Medicine

PET

Positron Emission Tomography

- Positron annihilation yields two gamma rays at 511 keV and opposite directions
- Scintillators on opposite sides provide line to interaction point
- Time difference allows to complete the 3D reconstruction

Typical isotope: ¹⁸F

Imaging in Nuclear Medicine

SPECT

Single Photon Emission Computed Tomography

- Low-energy gamma ray spectroscopy
- Pb mask to guide orthogonal rays only
- Gantry rotating around the patient to reconstruct 3D image

PET

Positron Emission Tomography

- Positron annihilation yields two gamma rays at 511 keV and opposite directions
- Scintillators on opposite sides provide line to interaction point
- Time difference allows to complete the 3D reconstruction

Treatment in Nuclear Medicine

α

Alpha therapy

✦ Short range

Typical isotope:

²²³Ra

- ✦ Large damage
- Recoils break free from molecules
- Dangerous to manipulate

Beta therapy

- Range up to mm
- Partial energy deposition requires higher dose for damage
- Locked in the biomolecule
- ✦ Easy to manipulate

Typical isotope:

KU LEUV

а

Radioisotopes for nuclear medicine

11

Most of the radioisotopes used nowadays in nuclear medicine are produced in research reactors (e.g. BR2 in SCK•CEN, Mol, Belgium) or at cyclotron facilities directly on the hospital site.

The choice of radioisotopes is limited to a handful — amongst the 3,000 radioisotopes known across the nuclear landscape — mostly due to a source & demand conundrum.

KU LEUVEN

Theranostics: a new concept

To best adapt the treatments to each patient, it is essential to be able to diagnose their condition accurately and to know the treatment reflects the diagnosis.

By using different isotopes of the same element, the distribution of the active agent can be accurately understood to optimise the treatment and minimise the negative impact of the exposure to radiation.

Existing knowledge

Tb in the Pharmacopeia

— insert information here —

Tb from ISOLDE to PSI

Tb collection are performed twice a year and shipped within the day to the Paul Scherrer Institute in Villigen

Alpha cancer therapy

CERN MEDICIS: MEDical Isotopes Collected from ISolde

Free beam for "free" radioisotopes at CERN

17

- 80% of the proton beam goes through the ISOLDE target unaffected
- That beam is then sent onto another target
- The target can be removed from the target area towards a Class A laboratory (video)
- An off-line separator is used to extract radioisotopes of interest

KU LEUVEN

CERN-MEDICIS from A to Z

CERN-MEDICIS: the ion source

CERN-MEDICIS will use an ISOLDE-type target-ion-source module. For versatility, the choice of ion source is the VADIS, a plasma ion source that has demonstrated high efficiencies.

Recent developments by the ISOLDE Target Group, RILIS, and Windmill Collaboration have combined VADIS with laser ionisation. Further simulation and characterisation of this ion source are ongoing by a KU Leuven PhD student at CERN.

CERN-MEDICIS: the separator

CERN-MEDICIS: Radiochemistry

- The CERN MEDICIS collection hall will be equipped with shielded glove boxes.
- CERN is building up the knowledge around the use of these devices.
- Basic operations will be performed to provide medical teams with useable liquid samples.
- A large hot cell has also been installed to begin the dismantling of the accumulated ISOLDE targets.

MEDICIS timeline

Ground breaking 3 Sept 2013

> Building delivered 15 Oct 2014

Separator delivered 28 June 2016

MEDICIS timeline

HUG® 🕯

KU LEUVEN

ISREC.

CUV

Commissioning planned for 2017

barator delivered 28 June 2016

Building delivered 15 Oct 2014

MEDICIS-Promed

A Horizon2020 Marie Skłodowska-Curie Actions: Innovative Training Network

- CERN - The University of Manchester - University of Mainz -- AAA - C2TN - CNAO - Lemer Pax - KU Leuven -- CHUV - HUG - EPFL - Medaustron -- Oxford University Consulting - ARRONAX - ILL -24 KU LEUVEN

CERN-MEDICIS 2GeV 6µA ISOLDE[†] CERN-MEDICIS[†] In-target RIB Isotope Parent Target Medical In-target Extracted Possible In-target halfisotope Comments Eext** Activity# gain Activity EOB/ Application life ActivityEOB beam Ion source Production ActivityEOB (%) Extracted Activity (Bq) EOB (Bq) Eext (%) rate (pps) (Bq) EOB (Bq) α,β - therapy/ ²¹³Bi 221 Fr Only mass ²²⁵Ac 2.8E8 2.8E7 8.4E8 UCX-Re 1.5E9* 7.2E8 50 4.2E8 SPECT/dosimetry separation 45.6m 10 ²¹²Bi ²²⁰Fr Only mass α,β therapy ²²⁴Ac UCX-Re 1.5E9* 1.4E9 1.7E9 1.7E8 50 5.1E9 2.5E9 separation 60.6m 10 ¹⁷⁷Lu ¹⁷⁷Lu ^{177}Lu Ta-Re/ Chemical 3.3E9 7.4E8 8.3E8 *β* therapy 6.4E8 6.4E6 20 1.7E8 Re-VD5 6.7d RILIS/VD purification 1 166Yb ¹⁶⁶Yb Chemical 166Yb 1.4E10 5.4E10 Auger therapy Ta-Re 5.4E10 4.1E10 2.1E9 20 1.1E10 purification 56.7h 5 166Ho ¹⁶⁶Ho Chemical ¹⁶⁶Ho Ta-Re 1.4E7 1.2E7 9.6E6 4.8E5 20 2.9E7 6.0E6 *β* therapy purification 25.8h 5 ^{161}Tb ^{161}Tb Chemical ^{161}Tb 2.1E7 2.7E7 1.9E7 9.5E5 20 2.7E7 5.4E6 β -/Auger therapy UCX-Re 6.9d 5 purification ¹⁵⁶Tb ^{156}Tb Chemical ^{156}Tb Ta-Re 2.5E88.9E7 5.5E7 5.5E5 20 6.3E7 1.3E7 β- therapy purification 5.35d 155Dy/ ¹⁵⁵Tb 3.2E9/ 155Dy 6.8E8 SPECT 7.9E9 5.3E9 5.3E7 20 3.4E9 RILIS Dy Ta-Re 7.4E8 5.33d Tb ¹⁵³Sm ¹⁵³Sm Chemical ¹⁵³Sm 1.5E8 2.2E9 2.8E9 1.4E8 20 5.2E9 1.0E9 β therapy UCX-Re 46.8h 5 purification ¹⁵²Dy/ ¹⁵²Dy ¹⁵²Tb 1.3E10/ 2.2E10 PET/CT Ta-Re 5.6E10 3.7E10 3.7E8 20 1.1E11 RILIS Dy 3.3E9 17.5h Tb ¹⁴⁹Tb ¹⁴⁹Tb Chemical ¹⁴⁹Tb 1.1E10 6.0E10 3.8E10 3.8E8 20 1.2E11 2.4E10 Ta-Re α therapy purification 4.1h 1 140Nd ¹⁴⁰Pr-PET/ ¹⁴⁰Nd Chemical ¹⁴⁰Nd Ta-Re 1.8E9 2.0E10 1.2E10 6.0E8 20 2.0E10 4.0E9 purification Auger therapy 3.4d 5 ⁸⁹Sr ⁸⁹Sr Only mass $^{89}\mathrm{Sr}$ β- therapy UCX-Re 1.2E10 2.3E9 2.0E9 1.0E8 20 2.7E9 5.4E8 searation 50.5d 5 ⁸²Sr ⁸²Sr Only mass ⁸²Sr 3.6E10 4.6E9 8.5E7 2.0E9 4.0E8 PET 1.7E9 20 UCX-Re 25.5d separation 5 ^{77}As $^{77}\mathrm{As}$ UCX-Chemical $^{77}\mathrm{As}$ 5.7E9 5.8E9 9.4E9 1.4E9 β- therapy 1.1E10 2.9E8 20 purification 38.8h VD5 5 ⁷⁴As $^{74}\mathrm{As}$ Y_2O_3 Chemical PET ^{74}As 6.5E9 1.2E9 3.8E8 1.9E7 20 4.5E8 9.0E7 -VD5 purif 17.8d 5 72_{As} 72_{As} Y_2O_3 Chemical ^{72}As PET 1.6E10 2.8E10 9.1E9 4.6E8 20 1.5E10 3.0E9 -VD5 5 purification 26.0d ^{71}As Y_2O_3 ^{71}As Chemical $^{71}\mathrm{As}$ PET 1.8E10 1.8E10 5.9E9 3.0E8 20 8.0E9 1.6E9 -VD5 purification 65.3h 5 ⁶⁷Cu 67Cu Chemical β therapy ⁶⁷Cu 2.7E9 3.4E9 1.5E9 1.1E8 20 2.7E9 5.4E8 UCX-Re purification 61.9h 7 ⁶⁴Cu ⁶⁴Cu Y_2O_3 PET, dosimetry, Chemical ⁶⁴Cu 1.1E10 2.3E10 7.1E9 3.6E8 20 2.1E10 3.6E9 -VD5 purification therapy 12.7h 5 ⁶¹Cu ⁶¹Cu Y_2O_3 Only mass ⁶¹Cu PET 1.7E10 2.6E8 2.1E10 4.0E9 7.7E9 5.1E9 20 -VD5 separation 3.3h 5 47Sc 47Sc 47Sc 4.2E10 β therapy Ti 6.4E10 5.0E25 2.1E9 20 5.9E10 1.2E10 Evaporation 3.4d 5 **KU LEUVEN** ^{44}Sc 44Sc PET 44c Ti 4.4E10 5.6E10 5.7E10 2.9E9 20 1.6E11 3.2E10 Evaporation 6.4 4.0h aF-LiF Only mass ¹¹C ¹¹CO 4.2E9 PET 1.4E9 separation

Isotope production at CERN MEDICIS.

catalog **ERN MEDICIS**

20.3m

Beyond novel medical radioisotopes

CERN MEDICIS Operation

- The production of radioisotopes at CERN MEDICIS is foreseen to last 30 weeks per year.
- Medical radioisotopes have priority.
- A board will decide of the science cases and a coordinator will make up the schedule.
- Activities will be reported via the INTC to the CERN Research Board.
- High-dose samples will be collected (much higher than at GLM, up to 10 GBq!) => Access will have to be limited to highly trained specialists.

Alternative use of the separator

- The off-line separator may also be used to separate other samples rather than just targets irradiated at ISOLDE, e.g. discussions are open with nToF for the purification of ²⁰⁴TI targets (contains >95% ²⁰³TI).
- During LS2, targets irradiated at other facilities could be brought to CERN MEDICIS to keep the activity going (e.g. from ARRONAX in Nantes, France, or iThemba LABS in South Africa).
- Any other element that may be produced at ISOLDE and which half-life is not too short is potentially accessible.

Mössbauer wish list...

⁵⁷Co

- ♦ 272 day half-life
- Online yields of 3x10⁶ (ZrO₂) to 10⁷ (Y₂O₃) ions per uC from a plasma source (MK5 or VADIS)
- Laser excitation schemes exist
- Possible contamination: ⁵⁷Fe (stable) produced via plasma ionisation

^{119m}Sn

- ♦ 293 day half-life
- Online yields unknown but would expect ~10⁷ ions per uC
- Possible targets include LaC, Ta and UCx
- Laser excitation schemes exist
- Possible contamination: ^{119g}Sn (stable)
- RILIS in narrow-band mode for isomer separation?

The development of novel medical radioisotopes for **theranostics** & **alpha therapy** requires to provide a catalog of radioisotopes for research.

CERN MEDICIS is a new offline separator for parasitic operation next to ISOLDE, which will provide isotopes for medical research 30 weeks per year.

Alternative use of this separator can be foreseen, of potential interest to other communities, though the specific requirements for each sample must be considered.

Operation & safety are also concerns that must be evaluated carefully.

