
Modern Methods for Simulation & Fitting

Daniel Greenwald

Technische Universität München
Physics Department, E18

International Workshop on Hadron Structure and Spectroscopy
September 5–7, Kloster Seeon

What is our goal?

We want to efficiently sample points
in a multidimensional space according to some distribution.

It may be the distribution

I of data simulated according to some model and its parameters

=⇒ Monte Carlo Simulation

I of parameters within a model explaining data

=⇒ Analysis

Regardless of the distribution,
the sampling techniques are the same.

What is our goal?

We want to efficiently sample points
in a multidimensional space according to some distribution.

It may be the distribution

I of data simulated according to some model and its parameters

=⇒ Monte Carlo Simulation

I of parameters within a model explaining data

=⇒ Analysis

Regardless of the distribution,
the sampling techniques are the same.

Most Basic Sampling

The two most basic methods of sampling one can—and commonly
does—use:

Given desired function f (e.g. model of particle decay)

I Importance Sampling

1. Sample a point according to some cover function, g : ~µ ∼ g

2. Weight point: w = f (~µ)/g(~µ)

3. Repeat.

I Hit-or-Miss Sampling

1. Sample a point according to some cover function, g : ~µ ∼ g

2. Generate uniform random value, r , between 0 and g(~µ)

3. Add point to data set if r ≤ f (~m)

4. Repeat.

Hit-or-Miss / Importance Sampling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

H.o.M. Efficiency = 84% = Average I.S. Weight

Hit-or-Miss / Importance Sampling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

H.o.M. Efficiency = 23% = Average I.S. Weight

Hit-or-Miss / Importance Sampling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

H.o.M. Efficiency = 2% = Average I.S. Weight

Hit-or-Miss / Importance Sampling

Yes, that example was rather artificial.

Either your problem will be more well behaved,
or you can choose a wiser cover function.

But, it demonstrates how even in a one dimensional problem,
these methods can easily become ineffecient.

Imagine sampling this way in an n-dimensional problem:

You need to surf an n-dimensional manifold
of an (n + 1)-dimensional space!

Efficiencies / Average Weights quickly drop to tiny fractions.

Example: Using ROOT-PWA1 to model

π + p → p + π+π−π+

with O(100) waves

Generate 170,000 events for COMPASS analysis of F. Krinner,
using hybrid of Hit-or-Miss and Importance Sampling:

1. Hit-or-Miss sample (with flat cover) to generate according to
5D-phase-space distribution.

2. Weight all events by model intensity (Importance Sampling)

3. Hit-or-Miss (with flat cover) on weights to cull set.

=⇒ Requires 10,000,000 calls to the model calculation.
=⇒ Requires 8 hours to run.
=⇒ ≈ 60 calls to model to generate an event.
=⇒ 1.7% efficiency

We can greatly speed this up
with a more efficient sampling method.

1
github.com/ROOTPWA-Maintainers/ROOTPWA

First generalization of simple sampling

The above algorithms are types of Monte Carlo Markov Chain:

A sequence of points in which the conditional probability for point given all
those before it, depends only on the point directly preceding it:

P(~xn+1|~x1, . . . , ~xn) = P(~xn+1|~xn)

As well, P(~xn+1|~xn) need not depend on ~xn:
(This is typical of the most naive algorithms. For example: Hit or Miss.)

Let’s focus on the Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

We want to sample according to a function: f (~x) : X→ R≥0

(for simplicity assume X ⊂ Rn)

Random Walk MCMC:

1. from a current point ~xi propose a new point ~y

Denote the probability of selecting ~y given ~xi by T (~y |~xi)

2. calculate the Hastings ratio:

r(~xi , ~y) =
f (~y)

T (~y |~xi)

/
f (~xi)

T (~xi |~y)
=

f (~y) · T (~xi |~y)

f (~xi) · T (~y |~xi)

3. accept/reject ~y with probability min(1, r)

3.1 if r ≥ 1, ~xi+1 = ~y

3.2 else throw uniform random number in unit interval:

a ∼ U(0, 1)

if a ≤ r , ~xi+1 = ~y ;

else ~xi+1 = ~xi

Metropolis-Hastings algorithm

We want to sample according to a function: f (~x) : X→ R≥0

(for simplicity assume X ⊂ Rn)

Random Walk MCMC:

1. from a current point ~xi propose a new point ~y

Denote the probability of selecting ~y given ~xi by T (~y |~xi)

2. calculate the Hastings ratio:

r(~xi , ~y) =
f (~y)

T (~y |~xi)

/
f (~xi)

T (~xi |~y)
=

f (~y) · T (~xi |~y)

f (~xi) · T (~y |~xi)

3. accept/reject ~y with probability min(1, r)

3.1 if r ≥ 1, ~xi+1 = ~y

3.2 else throw uniform random number in unit interval:

a ∼ U(0, 1)

if a ≤ r , ~xi+1 = ~y ;

else ~xi+1 = ~xi

Metropolis-Hastings algorithm

We want to sample according to a function: f (~x) : X→ R≥0

(for simplicity assume X ⊂ Rn)

Random Walk MCMC:

1. from a current point ~xi propose a new point ~y

Denote the probability of selecting ~y given ~xi by T (~y |~xi)

2. calculate the Hastings ratio:

r(~xi , ~y) =
f (~y)

T (~y |~xi)

/
f (~xi)

T (~xi |~y)
=

f (~y) · T (~xi |~y)

f (~xi) · T (~y |~xi)

3. accept/reject ~y with probability min(1, r)

3.1 if r ≥ 1, ~xi+1 = ~y

3.2 else throw uniform random number in unit interval:

a ∼ U(0, 1)

if a ≤ r , ~xi+1 = ~y ;

else ~xi+1 = ~xi

Metropolis-Hastings algorithm

We want to sample according to a function: f (~x) : X→ R≥0

(for simplicity assume X ⊂ Rn)

Random Walk MCMC:

1. from a current point ~xi propose a new point ~y

Denote the probability of selecting ~y given ~xi by T (~y |~xi)

2. calculate the Hastings ratio:

r(~xi , ~y) =
f (~y)

T (~y |~xi)

/
f (~xi)

T (~xi |~y)
=

f (~y) · T (~xi |~y)

f (~xi) · T (~y |~xi)

3. accept/reject ~y with probability min(1, r)

3.1 if r ≥ 1, ~xi+1 = ~y

3.2 else throw uniform random number in unit interval:

a ∼ U(0, 1)

if a ≤ r , ~xi+1 = ~y ;

else ~xi+1 = ~xi

Metropolis-Hastings algorithm

We want to sample according to a function: f (~x) : X→ R≥0

(for simplicity assume X ⊂ Rn)

Random Walk MCMC:

1. from a current point ~xi propose a new point ~y

Denote the probability of selecting ~y given ~xi by T (~y |~xi)

2. calculate the Hastings ratio:

r(~xi , ~y) =
f (~y)

T (~y |~xi)

/
f (~xi)

T (~xi |~y)
=

f (~y) · T (~xi |~y)

f (~xi) · T (~y |~xi)

3. accept/reject ~y with probability min(1, r)

3.1 if r ≥ 1, ~xi+1 = ~y

3.2 else throw uniform random number in unit interval:

a ∼ U(0, 1)

if a ≤ r , ~xi+1 = ~y ;

else ~xi+1 = ~xi

Metropolis-Hastings algorithm

In this way we scan our parameter space, spending our time wisely:

I concetrating on areas of interest

I but not completely avoiding areas of less interest

MARKOV CHAIN MONTE CARLO

3

3

1

1

1

1

1

2

2

2

METROPOLIS HASTINGS
ALGORITHM

one sample per step
1 propose move
2 accept or stay

• marginals
• sample near mode)

seed for optimization
• uncertainty propagation

f (✓) ! P(f |D, M)

Frederik Beaujean Apr 2015 5 / 14

Metropolis-Hastings algorithm

Some things to note:

1. In the accept/reject state we always produce a new point!

If we reject ~y , we accept ~xi as ~xi+1

This of course introduces auto-correlations,
which we avoid by applying a lag: taking every n’th sample.

We cannot simply change the accept/reject step
It is vital for the functioning of the algorithm.

Metropolis-Hastings algorithm

Some things to note:

2. The algorithm can propose a ~y0 for which f (~y0) = 0,

but it will never go to it, since:

r(~xi , ~y0) ∝ f (~y0) = 0

So from a point for which f (·) 6= 0
we can never reach a point for which f (·) = 0,
regardless of the proposal function

3. r(~xi , ~y) is undefined if f (~xi) = 0

but since we can never accept a new point for which f (·) = 0,
we need only insure:

f (~x0) 6= 0

That is: we need a suitable starting position.

MCMC in practice

1. We will need to tune the proposal function so that the algorithm is
efficient.

Most common:

I Gaussian,

I Cauchy,

I Student’s t

All require radius:

I If radius is too large: too often select unlikely points → chain becomes
ineffecient

I If radius is too small: though efficient, we take small steps, move too slowly,
see only part of parameter space

So we monitor efficiency:

I if efficiency is too low, decrease radius

I if efficiency is too large, increase radius

MCMC in practice

2. It takes some initial number of iterations before the Markov Chain
converges to its equilbrium distribution

There are many methods for judging whether a chain has converged.

Many judge graphically.

Analysis of Markov Chain

!  the full chain(s) can be stored for further analysis and parameter
tuning as ROOT TTree(s)
�  allows direct usage of standard ROOT tools for analysis

!  Markov Chain contains the complete information about the posterior
(except for the normalization)

par0 vs. iteration

par0 vs. par1
for every
iteration

convergence reached�

SOS 42

Analysis of Markov Chain

!  the full chain(s) can be stored for further analysis and parameter
tuning as ROOT TTree(s)
�  allows direct usage of standard ROOT tools for analysis

!  Markov Chain contains the complete information about the posterior
(except for the normalization)

par0 vs. iteration

par0 vs. par1
for every
iteration

convergence reached�

SOS 42

MCMC in practice

2. It takes some initial number of iterations before the Markov Chain
converges to its equilbrium distribution

There are many methods for judging whether a chain has converged.

Many judge graphically.

Or judge by modified R values (Brooks & Gelman, 1998)

1. run several chains for many iterations

2. for each parameter, calculate

R
′
(λ) ∝ R(λ) =

variance over all samples in all chains for λ

mean of chains’ individual variances for λ

3. chains have converged when R
′

is below threshold for all parameters,
indicating chains are sampling from true distribution.

MCMC demonstration
Let us look at how well the algorithm attacks equations with multiple peaking
structures and dead spaces:

f (x , y) = x4 sin2(x)y 6 cos2(y), 0 ≤ x , y ≤ 20

x
4 6 8 10 12 14 16 18 20

y

10

12

14

16

18

20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(y), 1000 iterations
2

cos
6

(x)y
2

sin
4

x

MCMC demonstration
Let us look at how well the algorithm attacks equations with multiple peaking
structures and dead spaces:

f (x , y) = x4 sin2(x)y 6 cos2(y), 0 ≤ x , y ≤ 20

x
4 6 8 10 12 14 16 18 20

y

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

14

16

18

20

(y), 10,000 iterations
2

cos
6

(x)y
2

sin
4

x

MCMC demonstration
Let us look at how well the algorithm attacks equations with multiple peaking
structures and dead spaces:

f (x , y) = x4 sin2(x)y 6 cos2(y), 0 ≤ x , y ≤ 20

x
0 2 4 6 8 10 12 14 16 18 20

y

4

6

8

10

12

14

16

18

20

1

10

2
10

3
10

4
10

(y), 8M iter.
2

cos
6

(x)y
2

sin
4

x

The Bayesian Analysis Toolkit

Rather than reinventing the wheel, you can do random walk MCMC using
BAT:
The Bayesian Analysis Toolkit

BAT is a C++ library developed in the particle-physics community

I It relies on ROOT for data handling and display:

I So many structures are already familiar to ROOT users

I Being a C++ library, interface to to any other existing code is easy:

I BAT’s structure encourages code separation!

PWA MC in BAT

Using the example from earlier:
Using ROOT-PWA2 to model

π + p → p + π+π−π+

with O(100) waves
to generate 170,000 events

F. Krinner implemented this in BAT:
simply call ROOT-PWA function from inside BAT;
literally a handful of lines of code.

Random-walk MCMC in BAT with a lag of 15:
=⇒ Requires 420,000 calls to model function
=⇒ Requires 20 minutes to run
=⇒ ≈ 2.5 calls to model per event
=⇒ 40% efficiency
Reminder: Hit-or-Miss/Importance Sampling—
10,000,000 calls; 8 hours; 60 calls per event; < 1.7% efficiency

2
github.com/ROOTPWA-Maintainers/ROOTPWA

Another Example

Another example from hadron physics: heavy meson decay.

Using YAP3 to calculate
D+ → π+π−π+

with 6 waves. Sampling with BAT:

]2 [GeVab
2m

0 0.5 1 1.5 2 2.5 3

]
2

 [G
eV

bc2
m

0

0.5

1

1.5

2

2.5

3

0

500

1000

1500

2000

2500

π 3→D

12,000,000 events in 59.5 seconds on my laptop.
3
http://github.com/YAP/YAP

And now for something a little different

Bayes’ Theorem:

1. Relate the joint probability to the
conditional probability axiomatically:

P(M ∩ D) = P(M|D)P(D)

2. The joint probability is
commutative:

P(M ∩ D) = P(D ∩M)

3. From which Bayes’ theorem practically falls out:

P(M|D)P(D) = P(D|M)P(M) =⇒ P(M|D) =
P(D|M)P(D)

P(B)

And for the parameters within a model:

P(~λ|D;M)︸ ︷︷ ︸
posterior

∝ L(D|~λ;M)︸ ︷︷ ︸
likelihood

· P0(~λ|M)︸ ︷︷ ︸
prior

And for a subset of parameters (~θ ⊂ ~λ, ~ν ≡ ~λ \ ~θ)

marginalized posterior: P(~θ|D) ∝
∫

P(D|~λ)P0(~λ)d~ν

What tools do you need?

If you only want to optimize your likelihood, you only need an optimizer.
For example:

I Gradient following

I Simulated Annealing/Tempering

If you want to

I integrate out “nuisance” parameters,

I compare models

I give non-approximate credibility ranges

you will need a sampler. For example:

I Random-walk MCMC

I Hamiltonian MCMC

MCMC Fitting Example

The same example as previously:
Using YAP to fit to

D+ → π+π−π+

with 6 waves:

σπ+, f0(980)π+, f0(1370)π+, f0(1500)π+, ρπ+, f2(1270)π+

=⇒ 10 free real parameters (5 amplitudes and phases) Fitting 20,000 data
points unbinned, sampling with BAT:
=⇒ Requires 12,500 iterations (per chain) for “burn-in.”
Then sampled 20,000 parameter points: =⇒ Required 21 minutes for full
fitting (including burn-in).
(Again, just run single core on my laptop.)

And we get back more than just a best fit:

D+ → π+π−π+ Posterior

amp(f_2 pi+ M = 0)
1.5 2 2.5 3

P
(a

m
p(

f_
2

pi
+

 M
 =

 0
)

| D
at

a)

0

2

4

6

8

10

12

14

16

18

smallest 50.7% interval(s) global mode
smallest 91.2% interval(s) mean and std. dev.
smallest 99.4% interval(s)

phase(f_2 pi+ M = 0)
135− 130− 125− 120− 115− 110−

P
(p

ha
se

(f
_2

 p
i+

 M
 =

 0
)

| D
at

a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

smallest 66.5% interval(s) global mode
smallest 95.1% interval(s) mean and std. dev.
smallest 99.7% interval(s)

amp(f_0_980 pi+ M = 0)
0.8 1 1.2 1.4 1.6 1.8 2

P
(a

m
p(

f_
0_

98
0

pi
+

 M
 =

 0
)

| D
at

a)

0

1

2

3

4

5

6

7

8

9

smallest 63.3% interval(s) global mode
smallest 95.3% interval(s) mean and std. dev.
smallest 99.7% interval(s)

phase(f_0_980 pi+ M = 0)
0 5 10 15 20 25

P
(p

ha
se

(f
_0

_9
80

 p
i+

 M
 =

 0
)

| D
at

a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

smallest 65.7% interval(s) global mode
smallest 94.6% interval(s) mean and std. dev.
smallest 99.7% interval(s)

D+ → π+π−π+ Posterior
We can also plot posterior distributions of functions calculable from the model
parameters. For example: fit fractions.

fit_frac(f_0_980 pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

P
(f

it_
fr

ac
(f

_0
_9

80
 p

i+
 M

 =
 0

)
| D

at
a)

0

10

20

30

40

50

60

70

80

smallest 92.7% interval(s) global mode
smallest 99.6% interval(s) mean and std. dev.

fit_frac(f_0_1370 pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

P
(f

it_
fr

ac
(f

_0
_1

37
0

pi
+

 M
 =

 0
)

| D
at

a)

0

10

20

30

40

50

60

smallest 50.1% interval(s)global mode
smallest 95.3% interval(s)mean and std. dev.
smallest 99.7% interval(s)

fit_frac(f_0(1500) pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

P
(f

it_
fr

ac
(f

_0
(1

50
0)

 p
i+

 M
 =

 0
)

| D
at

a)

0

10

20

30

40

50

smallest 47.7% interval(s) global mode
smallest 92.9% interval(s) mean and std. dev.
smallest 99.4% interval(s)

fit_frac(f_0(500) pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

P
(f

it_
fr

ac
(f

_0
(5

00
)

pi
+

 M
 =

 0
)

| D
at

a)

0

5

10

15

20

25

30

smallest 65.1% interval(s) global mode
smallest 94.9% interval(s) mean and std. dev.
smallest 99.7% interval(s)

D+ → π+π−π+ Posterior

Or look at correlations:

amp(f_2 pi+ M = 0)
1.5 2 2.5 3

ph
as

e(
f_

0_
13

70
 p

i+
 M

 =
 0

)

35−

30−

25−

20−

15−

10−

smallest 67.8 % interval(s) global mode
smallest 95.4 % interval(s) local mode
smallest 99.5 % interval(s) mean and std. dev.

amp(f_2 pi+ M = 0)
1.5 2 2.5 3

am
p(

f_
0(

15
00

)
pi

+
 M

 =
 0

)

0.6

0.8

1

1.2

1.4

1.6

smallest 67.9 % interval(s) global mode
smallest 95.4 % interval(s) local mode
smallest 99.6 % interval(s) mean and std. dev.

amp(f_2 pi+ M = 0)
1.5 2 2.5 3

ph
as

e(
f_

0(
15

00
)

pi
+

 M
 =

 0
)

55−

50−

45−

40−

smallest 68.1 % interval(s) global mode
smallest 95.2 % interval(s) local mode
smallest 99.7 % interval(s) mean and std. dev.

amp(f_2 pi+ M = 0)
1.5 2 2.5 3

am
p(

f_
0(

50
0)

 p
i+

 M
 =

 0
)

2

2.5

3

3.5

4

4.5

5

5.5

smallest 66.7 % interval(s) global mode
smallest 95.3 % interval(s) local mode
smallest 99.7 % interval(s) mean and std. dev.

D+ → π+π−π+ Posterior

Or look at correlations:

fit_frac(f_2 pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

fit
_f

ra
c(

f_
0(

15
00

)
pi

+
 M

 =
 0

)

0

0.2

0.4

0.6

0.8

1

smallest 65.5 % interval(s)global mode
smallest 95.1 % interval(s)local mode
smallest 98.8 % interval(s)mean and std. dev.

fit_frac(f_2 pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

fit
_f

ra
c(

f_
0(

50
0)

 p
i+

 M
 =

 0
)

0

0.2

0.4

0.6

0.8

1

smallest 66.0 % interval(s)global mode
smallest 95.0 % interval(s)local mode
smallest 99.0 % interval(s)mean and std. dev.

fit_frac(f_0_980 pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

fit
_f

ra
c(

f_
0_

13
70

 p
i+

 M
 =

 0
)

0

0.2

0.4

0.6

0.8

1

smallest 59.5 % interval(s)global mode
smallest 95.4 % interval(s)local mode
smallest 99.6 % interval(s)mean and std. dev.

fit_frac(f_0_980 pi+ M = 0)
0 0.2 0.4 0.6 0.8 1

fit
_f

ra
c(

f_
0(

15
00

)
pi

+
 M

 =
 0

)

0

0.2

0.4

0.6

0.8

1

smallest 60.9 % interval(s)global mode
smallest 95.1 % interval(s)local mode
smallest 99.5 % interval(s)mean and std. dev.

Summary

Sampling is important for both

I generating simulated data and

I fitting a model to data.

The most basic techniques are very ineffecient.

Replacing them is not difficult,
since many ready-made tools for sampling exist.

It is worth your time to think about
the optimal sampling method for your problem.

(If your problem is hairier than the examples I’ve given,
pay close attention to Fred’s talk!)

