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The problem
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The problem

Suppose we want to understand

| r i =
X

O
C��OVO(r) |Oi .

Consider the CDF

F(�⇤, x) =
h r |P

�O<�⇤ | r i
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A simpler problem

Ignore conformal symmetry, use only scaling symmetry ! “scaling
blocks”,

G
4

(x) =
X

O

C 2

��Ox
�O�2�� =

Z 1

0

x��2��g (s)(�)d�.

From [PRER ’12], in a given theory, for su�ciently large �⇤

G�⇤
4

(x) . 1

�(2�� + 1)
�

2��⇤ x�⇤�2�� .

Can we obtain more information on the structure of F(�⇤, x)?
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Crossing symmetry

Using a di↵erent channel for OPE expansion one finds

G
4
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and so
@nG

4
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4

(1� x).

At x = 1/2 one obtains

Z 1

0

[�� 2��]
(2k+1)�(s)

1/2(�)d� = 0,

[↵](n) = x�↵+n@nx↵ = ↵(↵� 1) . . . (↵� n + 1)

�(s)x (�) = x��2��g (s)(�)
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Crossing symmetry

Suppose �� � 1 in

Z 1

0

[�� 2��]
(2k+1)�(s)

1/2(�)d� = 0,

Then for k ⌧ p
�� approximate

[�� 2��]
(2k+1) ' (�� 2��)

2k+1,

Z 1

�2��

w2k+1�(s)
1/2(w + 2��)dw ' 0.

This suggests that �(s)
1/2(w + 2��) is approximately symmetric

around w = 0.



Reflection symmetry

Suppose the symmetry is exact, �(s)
1/2(�) = �(s)

1/2(4�� ��).

Normalize
R
�(s)
1/2(�)d� = 1.

Then F(�⇤, 1/2) =
R
�⇤
0

�(s)
1/2(�)d� is antisymmetric up to a

constant.
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Reflection symmetry
For general x the reflection is between �(s)x and �(s)

1�x , relating
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x
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Let x > 1/2, �x =
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�(s)x (�) ' 0 for � � �x .
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Saddle point interpretation

The same relation for general x can be obtained if one assumes
that the four-point function is dominated by a saddle point at
� = �(x),

�(x) = 2�� +
@ logG

4

(x)

@ log x
.

G
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x
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Threshold bound

Can we compute a bound on the tail which exhibits �x threshold?

Consider the linear programming formulation
[Rattazzi,Rychkov,Tonni,Vichi 2008]
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Z 1

0
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0

[�� 2��]
(2k+1)�(s)

1/2(�)d� = 0

max

Z 1

�⇤
�(s)
1/2(�)d� =?

This is of the form

A~x = ~b, x � 0

max

~c · ~x =?
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Linear programming duality

The linear programming problem of the form

A~x = ~b, x � 0,

max

~c · ~x =?,

is dual to another problem,

AT~y � ~c ,

min

~b · ~y =?

With the property that

~c · ~x  ~b · ~y .

~c · ~x  ~y · A~x = ~y · ~b.
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Linear programming duality
Any feasible solution to the dual problem provides an upper bound
for the primal problem. In our case the dual problem is

Q(�) = y
0

+
X

k
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(2k�1),

Q(�) � 0, 8� � 0,

Q(�) � 1, 8� � �⇤,
min y

0
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or alternatively

Q(�) =
X

k

�k [�� 2��]
(2k�1),

Q(�) � �1, 8� � 0,

Q(�) � Q
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Large ��
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q(v) 2 Podd

2n�1

,

q(v) � �1, 8v � �1,

q(v) � q
0

, 8v � v⇤,

min

1

q
0

+ 1
=?

For v⇤ > 1 the solution is given by the Chebyshev polynomial,
q(v) = T

2n�1

(v).

1� F(�⇤, 1/2)  1
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Other cases

The essential ingredient in the above analysis was the formula

@ne�f (x) = [�f 0(x)]ne�f (x)
�
1 + O(n2��1)

�
.

We had � = �� 2�
0

and f (x) = log x . More generally, the same
approach works for many other cases when there is a UV-IR
crossing-like equation and a large parameter limit. The analysis
can be extended to

1. Conformal block expansion, (�x = 2��/
p
1� x)

2. “Scaling block” expansion in ⇢ coordinate
(�x = 2��/

p
1� x)

3. Large space-time dimension limit of conformal block
expansion (�x is more complicated)

4. Large central charge limit of modular-invariant partition
function in CFT

2

(�⌧ = (1 + |⌧ |�2)c/12)



Cardy-like formula

In [PRER ’12] an asymptotic formula for the OPE coe�cients was
found, similar in spirit to Cardy formula. At large central charge
and under an additional sparse light spectrum condition Cardy
formula can be shown to work for operators � ⇠ c
[Hartman,Keller,Stoica ’14].

Consider a situation in which �� is large and the OPE coe�cients
with light operators are su�ciently small so that for x < 1/2 we
have

logG
4

(x) = �2�� log x + O(1),

I.e. essentially the contribution from the identity operator.
It then follows from the approximate reflection symmetry that we
should expect the dominant contribution for x > 1/2 to come from
� = �x = 2��/(1� x). This implies an asymptotic formula for
the OPE coe�cients for operators of dimension � > �

1/2 = 4��.
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Cardy-like formula

Using the technology of [HKS ’14] one shows for � > 4��

ḡ (s)(�) = exp


�� log

✓
1� 2��

�

◆
+ 2�� log

✓
�

2�
0

� 1

◆
+ O(�↵

�)

�
,

where ḡ (s) is g (s) averaged over interval of size ⇠ �↵
� with

1/2 < ↵ < 1.



Finite ��

Chebyshev bound shows only a polynomial decay, but we know that
it should be exponential in the end. Can we find a similar bound
which would be exponentially small?

Recall the exact dual problem

Q(�) =
X

k

�k [�� 2��]
(2k�1),

Q(�) � �1, 8� � 0,

Q(�) � Q
0

, 8� � �⇤,

min

1

Q
0

+ 1
=?

Take Q(�) / [�� 2��](2k�1) for some optimal k . This gives
(interpolation weakens the bound)

1� F(�, 1/2)  1

1 +
�(��2���1)�(2��)
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�+3
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Summary

I Approximate reflection symmetry in spectral decomposition

I Bound on scaling dimensions of dominant operators; e.g. 4�
0

or 2
p
2�

0

for x = 1/2.

I A version of Cardy formula for weakly coupled light spectrum

I Non-asymptotic convergence bound

Questions

I What about spin? (Transverse derivatives)

I Virasoro symmetry?

I Can we solve the case of scaling blocks exactly? (e.g. the tail
bound)

I Or at least guess the result?
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Conformal block for large �

We can find the form of the conformal block on real line x = x̄ in
the limit of large intermediate scaling dimension using the quartic
Casimir equation with WKB-like approximation. This gives

F
�,`(x) =(1� ⇢2)�✏�1(4⇢)�

⇥ exp


1

�

⇢2

1� ⇢2
(1 + ✏� ✏2)�2 + ✏(✏� 1)`2

�2 � `2
+ O(��2)

�

where

✏ =
d � 2

2
, ⇢ =

x

(1 +
p
1� x)2



Large spacetime dimension

Unitarity bounds
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Reflection symmetry then implies
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, �x = d
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) � resembles free fied
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Saturation of tail bound

2d global conformal blocks at Ising point �� = 1/8
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