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The problem
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Using ¢ x ¢ OPE, one can decompose
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The problem

Suppose we want to understand
) = Copo Vo(r)|O) .
@]

Consider the CDF

<¢r‘ PAO<A* ‘wr> _1_ G4A*(X)

FBex) = oy Y a0

where

Grr(x) = Y. Cluox *BeFpu(x)
O,Ap>A.

[Pappadopulo,Rychkov,Espin,Rattazzi '12; Rychkov,Yvernay '15]
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Ignore conformal symmetry, use only scaling symmetry — “scaling
blocks”,
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A simpler problem

Ignore conformal symmetry, use only scaling symmetry — “scaling
blocks”,

oo
Gi(x) = Y Chuoxo 280 = [ A 2agl)(a)dn,
) 0
From [PRER '12], in a given theory, for sufficiently large A,

1 2A _
GBx(x) < 2 D -2Dy
e ()3 r206,+1) X

Can we obtain more information on the structure of F(A,, x)?
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Crossing symmetry

Using a different channel for OPE expansion one finds
Ga(x) = Ga(1 — x),

and so

8" Ga(x) = (—0)"Ga(1 — x).

At x = 1/2 one obtains

/O [A = 20,)FD55) (A)dA =0,

[a]( = x=2+79"%* = a(a —1)...(a — n+ 1)
KD) = xA-2Reglo)(A)



Crossing symmetry

Suppose Ay > 1 in
[(ia-zma o ean o

Then for k < /A, approximate

[A _ 2A¢](2k+1) ~ (A _ 2A¢)2k+1,

/ W2k+17§j)2(w +2A4)dw ~ 0.
—2A,

This suggests that 'y§j)2(w +2A4) is approximately symmetric

around w = 0.
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Reflection symmetry
Suppose the symmetry is exact, 7§;)2(A) ygj)z(4A¢ —A).
Normalize f*y{s) (A)dA = 1

Then F(A,,1/2) = fo - 1/2 A)dA is antisymmetric up to a
constant.
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Reflection symmetry
(s)

For general x the reflection is between "’ and y(s)

1_y relating

A —2A -
A-2hy  A-2Ry
X 1—x

Let x > 1/2, Ay = 222 Then 14 (A) =0 for A <0 =

A(A) ~ 0 for A > A,
T’
1




Saddle point interpretation

The same relation for general x can be obtained if one assumes
that the four-point function is dominated by a saddle point at
A = A(x),

0 log Ga(x)
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Saddle point interpretation

The same relation for general x can be obtained if one assumes
that the four-point function is dominated by a saddle point at
A = A(x),

0 log Ga(x)

A(x) =204 + Dlog x

A(x) — 2A4 _ 7A(1 - x) — 2A4
X 1—x

G4(X) = G4(1 — X) =
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Can we compute a bound on the tail which exhibits A, threshold?
Consider the linear programming formulation
[Rattazzi,Rychkov, Tonni,Vichi 2008]
() (A) >0

T2 -

/O YH(A)dA =1

|18 —20,84 0,6 a)an ~ o

max/ 'ygj)z(A)dA =7

A

This is of the form
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Linear programming duality
Any feasible solution to the dual problem provides an upper bound
for the primal problem. In our case the dual problem is

Q(A) =yo + >yl — 2A,4]F1),

k
QR(A)=0, VA=0,
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Linear programming duality
Any feasible solution to the dual problem provides an upper bound
for the primal problem. In our case the dual problem is

Q(A) =yo + >yl — 2A,4]F1),

Q(A) >0, VA>0,
QR(A)>1, VA>A,,
min yp =7,

k
Q(A) Z _17 VA > 07
Q(A) > Qu, VA>A,,
. 1
min =7
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Large Ay

Q(A) =D XA — 274K,
k
-1, VA>D0,
Qo, VA > A,,
L =7.
Q +1

For large A4 we truncate at k = n < /Ay to find an
approximate truncated version (v = (A — 2A¢g)/2A,)

>
>

min

q(v) € P34,
q(V) Z _17 VV Z _17
q(v) > qo, Vv >,
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q(V) > qo, Vv 2> v,
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qo+1

For v, > 1 the solution is given by the Chebyshev polynomial,
q(v) = Tan—1(v).



Large Ay

q(v) € Pspdy,

qg(v) > -1, Vv> -1,

q(V) > qo, Vv 2> v,
1 ?

min =1
qo+1

For v, > 1 the solution is given by the Chebyshev polynomial,
q(v) = Tan—1(v).

1
A =204
1+ Tona ( 20, (7))

1— F(A,,1/2) < A, > 40,




Large Ay
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Large Ay
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Large Ay

1
1 + T2n—1 (A*2_A2¢A¢> 7
2
1+ Tona (A*A_jg/z) |
GFF with A4 =100 and 75 bound

F
1

1— F(A,,1/2) < A, > 40,

1— F(A,,x) < A, > A,

A2/3=6A¢



Other cases

The essential ingredient in the above analysis was the formula
9" = A (x)]7eM ) (14 0(n?A7h)) .

We had A = A — 2/ and f(x) = log x. More generally, the same
approach works for many other cases when there is a UV-IR
crossing-like equation and a large parameter limit. The analysis
can be extended to

1. Conformal block expansion, (Ay =2A4/y/1 — x)

2. "Scaling block” expansion in p coordinate
(B =208/V/T~x)

3. Large space-time dimension limit of conformal block
expansion (A is more complicated)

4. Large central charge limit of modular-invariant partition
function in CFT, (A, = (1 + |7|72)c/12)



Cardy-like formula

In [PRER '12] an asymptotic formula for the OPE coefficients was
found, similar in spirit to Cardy formula. At large central charge
and under an additional sparse light spectrum condition Cardy
formula can be shown to work for operators A ~ ¢
[Hartman,Keller,Stoica '14].
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Cardy-like formula

In [PRER '12] an asymptotic formula for the OPE coefficients was
found, similar in spirit to Cardy formula. At large central charge
and under an additional sparse light spectrum condition Cardy
formula can be shown to work for operators A ~ ¢
[Hartman,Keller,Stoica '14].

Consider a situation in which Ay is large and the OPE coefficients
with light operators are sufficiently small so that for x < 1/2 we

have
log Ga(x) = —2A4log x + O(1),

l.e. essentially the contribution from the identity operator.

It then follows from the approximate reflection symmetry that we
should expect the dominant contribution for x > 1/2 to come from
A=A, =2A4/(1 —x). This implies an asymptotic formula for
the OPE coefficients for operators of dimension A > Ay, = 4A.



Cardy-like formula

Using the technology of [HKS "14] one shows for A > 4A,
_(s 2A4 A N
gC)(A) = exp [—A log (1 — A> +2A4log <2A 1) + O(Aqs)} ,

where g(%) is g(*) averaged over interval of size ~ Ag with
12<a<l.
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Finite A(/)
Chebyshev bound shows only a polynomial decay, but we know that

it should be exponential in the end. Can we find a similar bound
which would be exponentially small? Recall the exact dual problem

QA) =) " M[A — 244K D),
k
~1, VA >0,

>
> Qo, VA=A,

Take Q(A)  [A — 2A4]?1) for some optimal k. This gives
(interpolation weakens the bound)

1
M(A—2A,—1)(2A)
&5

1— F(A,1/2) <

1+
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Finite A(/)

1
MA—-2A,-1)I(2Ay)
r(A+3) (A 1)

or, defining k(A) = [(A — 4A4 — 3)/4], without interpolation

—F(A,1/2) <

1+

1

[A 2A ]2k )+1 7
[ 2A¢]2k(A)+1

—F(A,1/2) <
1-—

Asymptotically,

V2m  2n,-1 (1 A
- . < S (2
HBe1/2) = A" <2>

Compare to

AL—2A
Ga(1/2) (1~ (A*,l/z))wr(m:ﬁl)ﬁ“> (;) ‘



Finite Z§¢

73, finite-A, bounds and GFF at Ay = 10

F
1r

44, 50, 64,
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Summary

» Approximate reflection symmetry in spectral decomposition

v

Bound on scaling dimensions of dominant operators; e.g. 44
or 2v/2Aq for x = 1/2.

» A version of Cardy formula for weakly coupled light spectrum

» Non-asymptotic convergence bound
Questions

» What about spin? (Transverse derivatives)

» Virasoro symmetry?

v

Can we solve the case of scaling blocks exactly? (e.g. the tail
bound)

Or at least guess the result?

v



Conformal block for large A

We can find the form of the conformal block on real line x = X in
the limit of large intermediate scaling dimension using the quartic
Casimir equation with WKB-like approximation. This gives

Fau(x) =(1—p*) " (4p)?

2 _ 2\A2 _1\/2
X exp | = o (L+e—e)A+e(e— 1)
Al—p2 AZ_ 2

+ 0(A7?)

where
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Large spacetime dimension

Unitarity bounds

d-—2 d
AN AN>—  ~ —
0 or — >

Reflection symmetry then implies

d
A=0 or EgAgAX or A=Al

For Ay = %, A, = % = ¢ resembles free fied



Saturation of tail bound

2d global conformal blocks at Ising point A, =1/8




