High precision determination of the gluon-fusion Higgs cross section at the LHC

Elisabetta Furlan ETH Zurich

> In collaboration with Babis Anastasiou, Claude Duhr, Ialko Dulat, Ihomas Gehrmann, Iranz Herzog, Achilleas Lazopoulos, Bernhard Mistlberger

Sinergia Meeting, EPFL, Lausanne

17/12/2015

- The Higgs boson is a fundamental ingredient of the Standard Model without it, this theory is not self-consistent!
- Its discovery brought great excitement...

- The Higgs boson is a fundamental ingredient of the Standard Model without it, this theory is not self-consistent!
- Its discovery brought great excitement...



- The Higgs boson is a fundamental ingredient of the Standard Model without it, this theory is not self-consistent!
- Its discovery brought great excitement...
  - ... and then a bit of depression..



#### ... this Higgs boson looks "too Standard-Model

like"!



| Parameter         | ATLAS+CMS                       |  |
|-------------------|---------------------------------|--|
| $\kappa_j \ge 0$  | Measured                        |  |
| κ <sub>Z</sub>    | $1.00^{+0.10}_{-0.11}$          |  |
| $\kappa_W$        | $0.91\substack{+0.09 \\ -0.09}$ |  |
| κ <sub>t</sub>    | $0.89^{+0.15}_{-0.13}$          |  |
| κ <sub>τ</sub>    | $0.90^{+0.14}_{-0.13}$          |  |
| к <sub>b</sub>    | $0.67^{+0.22}_{-0.20}$          |  |
| κ <sub>μ</sub>    | $0.2^{+1.2}_{-0.2}$             |  |
|                   |                                 |  |
|                   |                                 |  |
| E <sup>&gt;</sup> |                                 |  |

LHC Run 1 Prelimin

X

# Why precision Higgs?

- Many observed phenomena (neutrino mass, dark matter, ..) are not described by the Standard Model
  - can they be related to the origin of electroweak symmetry breaking? Can they affect Higgs physics?
- The Higgs boson is "unnaturally" light
  - is the Higgs sector more complicated than in the Standard Model (new particles/interactions)?

## Why precision Higgs?

- If "hints" of new physics persist
  - is this new physics related to the Higgs boson?
  - does it change its properties (decays, couplings, width)?

# Why precision Higgs?

- Precise predictions are fundamental
  - deviations in the Higgs phenomenology can be of just some few %
    - → the current precision in the extraction of the Higgs properties is limited by the theoretical error on the NNLO gluon-fusion production rate
  - we want to study in depth the properties of new particles
    - → we already developed a great set of tools for precision Higgs studies, extend them!

# Higgs Production at N<sup>3</sup>LO

"Ingredients"

- heavy-quark effective theory (HQET)
- full quark-mass effects (from top, bottom, charm) through NLO
- 2-loop EW, 3 loop QCD/EW corrections
- convolution with parton distribution functions (pdf)
- uncertainties (scale, pdf,  $\alpha_s$ , missing contributions, approximations)

#### Heavy quark effective theory

- Integrate out the (heavy) top quark
  - the quark loop is replaced by an effective gluon-Higgs vertex



#### Heavy quark effective theory

- Is this a good approximation?
  - ▶ at LO



## Heavy quark effective theory

- Is this a good approximation?
  - at NLO, "improve" the result from the EFT by rescaling it with the exact LO cross section:



#### Scale variation



## Full quark-mass effects

- The full dependance of the Higgs production cross section on the quark mass is known exactly through NLO
   Spira, Djouadi, Graudenz, Zerwas; Harlander, Kant; Aglietti, Bonciani, Degrassi, Vicini.
  - include it for top, bottom and charm quarks
    + 3.9% -5.1% -0.5% on  $\sigma_{EFT}^{NLO}$
- estimate the error from unknown top-bottom interference effects at NNLO as

$$\delta_{tb} = \frac{\sigma_{t,b}^{NLO} - \sigma_t^{NLO}}{\sigma_{t,b}^{NLO}} \times \sigma_{EFT,r}^{NNLO} \sim \pm 0.7\%$$

## Full quark-mass effects

- Rescale NNLO and N<sup>3</sup>LO cross sections by the exact LO K-factor  $K_{LO}$
- include known  $1/m_t$  NNLO corrections

Harlander, Ozeren; Pak, Rogal, Steinhauser; Mantler, Marzani

 $gg \sim +1.2\%$  $gg \sim -0.5\%$ 

• the error due to the truncation in the inversemass expansion is estimated as

$$\delta_{1/m_t} \sim \pm 1\%$$

Harlander, Ozeren; Pak, Rogal, Steinhauser; Mantler, Marzani

#### Electroweak corrections

• Known exactly at LO in  $\alpha_s(\mathcal{O}(\alpha\alpha_s))$ 

Aglietti, Bonciani, Degrassi, Vicini; Actis, Passarino, Sturm, Uccirati



- At NLO, effects from light quarks are known in an effective theory  $\longrightarrow +5.1\%$  on  $\sigma_{EFT}^{NLO}$
- Estimate the error from missing NLO contributions by varying the QCD/EW effective theory coefficient  $\longrightarrow \delta_{EW} \sim \pm 1\%$

# $(pdf + \alpha_s)$ uncertainty

• We follow the PDF4LHC recommendations for the separate calculation of PDF and  $\alpha_s$  uncertainties, and combine them in quadrature



# N<sup>3</sup>LO pdf uncertainty

- N<sup>3</sup>LO pdfs are not available; we use NNLO pdfs
  - how large is the error associated to this? To estimate it, we compare with the same situation all lower orders



# N<sup>3</sup>LO pdf uncertainty

- N<sup>3</sup>LO pdfs are not available; we use NNLO pdfs
  - from the change of the NNLO result between NNLO and NLO pdfs, we estimate

 $|\delta_{pdfTh} \sim \pm 1.2\%$ 

## Soft approximation

- The N<sup>3</sup>LO cross section is computed as an expansion around the Higgs threshold  $z = \frac{m_H^2}{c} = 1$ 

$$\hat{\sigma}(z) = \hat{\sigma}_{SV} + \sum_{n=0}^{N_{trunc}} \sigma^{(n)} (1-z)^n$$

what is the error associated to the truncation of this expansion?

#### Soft approximation

• Look at the convergence of the series:



#### Soft approximation

• As a conservative estimate we take

$$\delta_{trunc} = 10 \times (\sigma_{EFT}^{(3)}(30) - \sigma_{EFT}^{(3)}(20)$$
$$\Rightarrow 0.6\%$$

(consistent with other estimates of the truncation error)

## Conclusion

The N<sup>3</sup>LO Higgs boson production cross section and the associated errors are

| $\sigma$ | $\delta_{pdf}$ | $\delta_{lpha_s}$ | $\delta_{scale}$ | $\delta_{trunc}$ | $\delta_{pdfTh}$ | $\delta_{EW}$ | $\delta_{tb}$ | $\delta_{1/m_t}$ |    |
|----------|----------------|-------------------|------------------|------------------|------------------|---------------|---------------|------------------|----|
| 48.48    | $\pm 0.90$     | $\pm 1.26$        | + 0.09<br>-1.11  | ±0.29            | $\pm 0.58$       | ±0.48         | $\pm 0.34$    | $\pm 0.48$       | pb |
|          | $\pm$ 1.86     | ±2.60             | + 0.19<br>-2.29  | ±0.6             | ±1.20            | ± 1           | ±0.7          | ± 1              | %  |

in quadrature linearly  $\sigma = (48.48 \pm 1.55 \pm 2.08) \text{ pb}$  $= 48.48 \text{ pb} \pm 3.19\% \pm 4.29\%$ 

## Conclusion

The N<sup>3</sup>LO Higgs boson production cross section and the associated errors are

| $\sigma$ | $\delta_{pdf}$ | $\delta_{lpha_s}$ | $\delta_{scale}$ | $\delta_{trunc}$ | $\delta_{pdfTh}$ | $\delta_{EW}$ | $\delta_{tb}$ | $\delta_{1/m_t}$ |    |
|----------|----------------|-------------------|------------------|------------------|------------------|---------------|---------------|------------------|----|
| 48.48    | $\pm 0.90$     | $\pm 1.26$        | + 0.09<br>-1.11  | $\pm 0.29$       | $\pm 0.58$       | ±0.48         | $\pm 0.34$    | $\pm 0.48$       | pb |
|          | $\pm$ 1.86     | ±2.60             | + 0.19<br>-2.29  | ±0.6             | ±1.20            | ± 1           | ±0.7          | ± 1              | %  |

in quadrature

#### linearly

 $\sigma = (48.48 \pm 1.55 \substack{+2.08 \\ -3.10}) \text{pb}$ = 48.48pb \pm 3.19\% \begin{array}{c} +4.29\% \\ -6.40\% \end{array}

"traditional" estimate



## Conclusion

- calculation of the N<sup>3</sup>LO gluon-fusion production cross section in HQFT
- inclusion of all known effects beyond the HQET
- accurate estimate of the errors, including error from missing information and from approximations
- room for improvement
  - going beyond the threshold expansion
  - computing the missing effects