

Associated top+Higgs production with CMS

Lorenzo Bianchini ETH Zürich

Sinergia Meeting, Dec. 17th 2015, EPFL

Thursday, December 17, 15

The quark Yukawa sector

3rd generation (b)

0 leptons + jets

VBF→bb

CMS, 1506.01010,

submitted to PRD

(Z,W⁺)H→bb

• 0,1,2-leptons + jets

CMS, PRD 89 012003 (2014) ATLAS, JHEP 01 (2015) 069

ttH→bb

I-2 leptons + jets
 CMS, JHEP 09 (2014) 087
 CMS, EPJC 75 (2015) 212
 ATLAS, EPJC 75 (2015) 349

ATLAS, arXiv:1507.04548, submitted to EPJC

CMS, arXiv:1506.01010, submitted to PRD

$H \rightarrow b\overline{b}$	Best fit (68% CL)	Upper limi	ts (95% CL)	Signal sig	nificance
Channel	Observed	Observed	Expected	Observed	Expected
VH	0.89 ± 0.43	1.68	0.85	2.08	2.52
ttH	0.7 ± 1.8	4.1	3.5	0.37	0.58
VBF		5.5	2.5	2.20	0.83
Combined	$1.03^{+0.44}_{-0.42}$	1.77	0.78	2.56	2.70

2.6σ significance

3rd generation (t)

The largest, O(I), coupling in the Yukawa sector

- no direct decay into top quarks
- tightest constraints from GGF and $BR(H \rightarrow \gamma \gamma)$
 - complement with direct measurement

CMS, arXiv:1509.08159, submitted to JHEP

	TTbar	+ Higgs		
JHEP 09 (2014) 03 CMS $\sqrt{s} = 7$ TeV, 5.0-5.1 fb ⁻¹ ; $\sqrt{s} = 8$	87 TeV, 19.3-19.7 fb ⁻¹ PLB 740	(2015) 222 EPJ	C 75 (2015) 349	
	— Observed	ATLAS to to	t. ATLAS √s=8 TeV, 20.3 fb ⁻¹ – at. tťH (H→bb) (tot) (stat)	
$\eta 7 = 120.0 \text{ GeV}$ $\mu_{tiH} = 2.8^{+1.0}_{-0.9}$	Expected 3	∫Ldt = 4.5 fb ⁻¹ , √s = 7 TeV Ldt = 20.3 fb ⁻¹ , √s = 8 TeV	2.8 ± 2.0 (1.4) _	
∫ H→γγ, bb,		$m_{H} = 125.4 \text{ GeV}$ eliminary $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ ft}$	1.2 ± 1.3 (0.8) -	
4	0.5		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1.5 \\ 1.5 \\ 2.0 \end{array} \end{array} \end{array} = \begin{array}{c} 1.5 \pm 1.1 & (0.7) \end{array} \end{array}$	
3	-9.5 0 0.5 1	1.5 2 2.5 3 3.5 4 μ _{πH} H -0.9 ^{+3.1}	$\frac{4 \ 6 \ 8 \ 10}{\text{Best fit } \mu = \sigma / \sigma_{SM}} \text{ for } m_{H} = 125 \text{ GeV}$	
2		4ℓ 1.8 ±29 {	4.8) 2.0) - 5.2)	
		Combined $H \rightarrow WW \rightarrow H$ 2.1 ^{+1.4}	arXiv:1506.05988,	
0 1 2 3	4 5 μ _{tīH}	$\frac{10^{-48} - 6^{-4} - 2^{-0} - 2^{-4} - 6^{-8} - 10^{-12}}{\text{best fit } \mu(t\bar{t}H) = \sigma/\sigma_{\rm SM} \text{ for } m_H = 125 \text{ GeV}}$	accepted by PLB	
Experiment		obs. (exp.) limit	best-fit value	
		95% CL	(±Ισ)	
	CMS	< 4.1 (3.5)	0.7 +1.9-1.9	
n - naurons	ATLAS	< 3.4 (2.2)	I.5 ^{+1.1} -1.1	
	CMS	< 7.4 (4.7)	2.7 ^{+2.6} -1.8	
n photons	ATLAS	< 6.7 (4.9)	1.4 ^{+2.1} -1.4	
	CMS	< 6.6 (2.4)	3.7 ^{+1.6} -1.4	
ri - ieptons	ATLAS	< 4.7 (2.4)	2.1 ^{+1.4} -1.2	

ATLAS+CMS: Run llegacy

7+8 TeV "grand combination" of ATLAS+CMS. Largest pulls:

- $\sigma(ttH)$ at **2.3** σ from SM
- **BR**^{bb}/**BR**^{ZZ} at **2.4** σ from SM

				LHC Run 1	,	SM p-value
Production process	Observed Significance(σ)	Expected Significance (σ)	κ _z	$\kappa_V \le 1$ $BR_{BSM}=0$		11%
VBF	5.4	4.7	κ _w	$-\pm 1\sigma$ $-\pm 2\sigma$		
WH	2.4	2.7	κ _t	_		<u> </u>
ZH	2.3	2.9		_		
VH	3.5	4.2	κ _τ			
ttH	4.4	2.0	κ _b		_	
Decay channel			r	_		
Η→ττ	5.5	5.0	۴g	_		
H→bb	2.6	3.7	κγ			
			BR _{BSM}	0.2 0.4 0.6	: 0.8 1 1.2	2 1.4 1.6 1.8 2
						Parameter value

ATLAS and CMS Preliminary

Search for $ttH \rightarrow bb$

- Challenges:
 - large irreducible background
 - same final state, similar diagrams
 - combinatorial background
 - not just a bump hunting
 - jets not always come from top/ Higgs decay
 - allow for ISR jets and partial event reconstruction

Pursue an analysis strategy based on an analytical Matrix Element Method

CMS-PAS-HIG-14-010 CMS, EPJC 75 (2015) 212

7

General formulation of the MEM

Assign each reconstructed event with its probability:

 $\operatorname{Prob}\{\vec{y} \in [\vec{y}_0, \vec{y}_0 + d\vec{y}] \mid S, \theta\} = p_S(\vec{y}_0; \theta) d\vec{y}$

$$\int_{\mathcal{A}} p_{\mathbf{S}}(\vec{y}\,;\boldsymbol{\theta}) d\vec{y} = 1$$

(normalised) differential cross section:

$$p_{\boldsymbol{S}}(\boldsymbol{\vec{y}};\boldsymbol{\theta}) = \frac{1}{\sigma_{\boldsymbol{S}}(\boldsymbol{\theta})} \frac{d\sigma_{\boldsymbol{S}}}{d\boldsymbol{\vec{y}}}(\boldsymbol{\vec{y}};\boldsymbol{\theta})$$

General formulation of the MEM

Assign each reconstructed event with its probability:

 $\operatorname{Prob}\{\vec{y} \in [\vec{y}_0, \vec{y}_0 + d\vec{y}] \mid S, \theta\} = p_S(\vec{y}_0; \theta) d\vec{y}$

$$\int_{\mathcal{A}} p_{\boldsymbol{S}}(\vec{y}\,;\boldsymbol{\theta}) d\vec{y} = 1$$

(normalised) differential cross section:

 $p_{\mathbf{S}}(\vec{\mathbf{y}};\boldsymbol{\theta}) = \frac{1}{\sigma_{\mathbf{S}}(\boldsymbol{\theta})} \frac{d\sigma_{\mathbf{S}}}{d\vec{\mathbf{y}}}(\vec{\mathbf{y}};\boldsymbol{\theta})$

$$d\sigma_{\mathbf{S}}(\vec{\boldsymbol{y}}\,;\boldsymbol{\theta}) = \left[\int d\Phi(\vec{x}) dx_{\mathrm{a}} dx_{\mathrm{b}} \sum_{i,j} \frac{f_i(x_{\mathrm{a}}) f_j(x_{\mathrm{b}})}{(1+\delta_{ij}) x_{\mathrm{a}} x_{\mathrm{b}} s} |\mathcal{M}_{\mathbf{S}}(\vec{x},\boldsymbol{\theta})|^2 W(\vec{\boldsymbol{y}},\vec{x};\boldsymbol{\theta})\right] d\vec{y}$$

• multi-channel processes: $p(\vec{y}; \theta) =$

$$p(\vec{y};\theta) = \lambda_{S}(\theta)p_{S}(\vec{y};\theta) + \sum_{j}\lambda_{Bj}p_{Bj}(\vec{y})$$

sample likelihood:

$$\mathcal{L}(\vec{\boldsymbol{y}};\boldsymbol{\theta}) = \left[\prod_{i=1}^{N} p(\vec{\boldsymbol{y}}_i;\boldsymbol{\theta})\right] \frac{e^{-\mathcal{N}(\boldsymbol{\theta})}\mathcal{N}(\boldsymbol{\theta})^N}{N!}$$

MEM for hypothesis testing

Ratio of MEM probability densities is a powerful test statistic

optimal properties (largest power at fixed error) L. Neyman, Phil. Trans. Royal Soc. London 236 (1937) 333

$$\mathrm{LR} = \frac{\lambda_{S} p_{S}}{\sum_{j} \lambda_{B_{j}} p_{B_{j}}} \quad \text{or} \quad \frac{1}{1 + \mathrm{LR}} \in [0, 1]$$

CDF, PRD 85 072001 (2012)

CDF, PRL 103 (2009) 092002

ATLAS-CONF-2015-047

W + 2 Jets, SVSV

Analysis strategy

11

Select high-purity events

use only b-tag values of jets

Fit full MEM discriminant shape

- split into categories of "event interpretation":
 - SL & full reconstruction
 - SL & incomplete reconstruction
 - dileptonic

 $P_{s/b} = [I + p(tt+bb)/p(ttH)]^{-1}$

Results: 8 TeV

Key feature:

- large ttbb/ttH separation => less sensitivity to ttbb normalisation
 - less sentitive to a priori tt+bb theory uncertainty
 - after-fit, tt+bb uncertainty is ~20%

CMS, EPJC 75 (2015) 212

Looking ahead: Run 2

- New MC simulations
 - NLO generators, new parton-showers (PY8), new tunes.
 - under validation
- Detector calibration
 - b-jet energy regression, b-tagging SF
 - well progressed

- Recent ETH+UZH activity:
 - new b-tagger (~30% less fake rate)
 - fully hadronic ttH
 - boosted top tagging
 - extending MEM using neural-networks

MEM meets aNN

CDF, PRL 101 (2008) 252001

σ(single-t): 10% improvement compared to single-best discr.

ATLAS, EPJC 75 (2015) 349

Variable	Definition	NN rank			
variable	Demitton	$\geq c_{j_1} \geq d_{j_2}$	$\geq c_j, c_k$	$5j \ge 4b$	51, Ob
D1	Neyman–Pearson MEM discriminant (Eq. (4))	1	10	-	-
Centrality	all jets and the lepton	2	2	1	-
$p_{\rm T}^{\rm jet5}$	$p_{\rm T}$ of the fifth leading jet	3	7	-	-
H1	Second Fox–Wolfram moment computed using all jets and the lepton	4	3	2	-
ΔR_{bb}^{avg}	Average ΔR for all b-tagged jet pairs	5	6	5	-
SSLL	Logarithm of the summed signal likelihoods (Eq. (2))	6	4	-	-
$m_{\rm bb}^{\rm min\ \Delta R}$	Mass of the combination of the two b-tagged jets with the smallest ΔR	7	12	4	4
$m_{\rm bj}^{\rm max \ p_T}$	Mass of the combination of a b-tagged jet and any jet with the largest vector sum p_T	8	8	-	-
$\Delta R_{\rm bb}^{\rm max~p_T}$	ΔR between the two b-tagged jets with the largest vector sum p_T	9	-	-	-
$\Delta R_{\rm lep-bb}^{\rm min\ \Delta R}$	ΔR between the lepton and the combination of the two b-tagged jets with the smallest ΔR	10	11	10	-
$m_{\mathrm{uu}}^{\min \Delta \mathrm{R}}$	Mass of the combination of the two untagged jets with the smallest ΔR	11	9	-	2
Aplan _{b-jet}	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor[92] built with only b-tagged jets	12	-	8	-
N_{40}^{jet}	Number of jets with $p_T \ge 40 GeV$	-	1	3	-
$m_{\rm bj}^{\rm min\ \Delta R}$	Mass of the combination of a b-tagged jet and any jet with the smallest ΔR	-	5	-	-
$m_{jj}^{\text{max } p_T}$	Mass of the combination of any two jets with the largest vector sum p_T	-	-	6	-
$H_{\rm T}^{\rm had}$	Scalar sum of jet p_T	-	-	7	-
$m_{jj}^{\min \Delta R}$	Mass of the combination of any two jets with the smallest ΔR	-	-	9	-
$m_{\rm bb}^{\rm max~p_T}$	Mass of the combination of the two b-tagged jets with the largest vector sum p_T	-	-	-	1
$p_{T,uu}^{\min \Delta R}$	Scalar sum of the p_T of the pair of untagged jets with the smallest ΔR	-	-	-	3
m _{bb} ^{max m}	Mass of the combination of the two b-tagged jets with the largest invariant mass	-	-	-	5
$\Delta R_{uu}^{min \Delta R}$	Minimum ΔR between the two untagged jets	-	-	-	6
$m_{ m jjj}$	Mass of the jet triplet with the largest vector sum p_T	-	-	-	7

ttH: combination of MEM discriminant + other variables using an artificial NN

Looking (even more) ahead

* [no theory, full theory]

**[I/2 theory & I/ \sqrt{L} sys., Run I syst.]

BRBSM K_{ZY} K_Y Κw Κz Kg Kb Kt Kτ Kμ [9,10] ATLAS* [5,9] [10,12] [8,11] [10,14] [4,5] [4,5] [4,4] [7,8] [14,14] CMS** [10,12] [2,5] [2,4] [3,5] [4,7] [7,10] [2,5] [7,11] [8,8] [2,5]

Optimistic scenario:

ATL-PHYS-PUB-2014-016

CMS-NOTE-13-002

Snowmass, arXiv:1310.8361

Conclusions

- Released our $ttH \rightarrow bb$ search with Run I data
 - proof of principle of the method
 - a few spin-offs inside CMS
 - very performing, but not yet sensitive to SM
- Run I showed overall agreement with SM Higgs hypothesis
 - but not all channels measured with conclusive evidence yet
 - no evidence of $H \rightarrow bb$: a $\sim 2\sigma$ under-fluctuation?
 - "unexpected" evidence of ttH: a $\sim 2.3\sigma$ over-fluctuation?
- We are continuing our effort on $ttH \rightarrow bb$
 - detector commissioning is done
 - consolidating new improvements
 - first preliminary results by Moriond2016
 - 2015 data alone is like adding ~20% sensitivity to Run I
 - need ~15 fb⁻¹ to reach $3\sigma \Leftrightarrow$ end of 2016

Back up

18

- What about even-lighter quarks?
 - radiative decays: $H \rightarrow \Phi \gamma, \rho \gamma, ...$
 - sensitive to K_{s/d/u}

$$\frac{\mathrm{BR}_{h\to\phi\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma}[(3.0\pm0.3)\kappa_{\gamma}-0.78\bar{\kappa}_{s}]\times10^{-6}}{0.57\bar{\kappa}_{b}^{2}}$$

3rd generation (t)

The largest, O(I), coupling in the Yukawa sector

- no direct decay into top quarks
- tightest constraints from GGF and $BR(H \rightarrow \gamma \gamma)$
 - complement with direct measurement

Single top + Higgs

20

Search for tH production (t- & tW channel)

- small in SM ($\sigma_{NLO} \sim 18$ fb)
- sensitive to $sign(g_{HWW} \times y_t)$

CMS: optimise for tHq $(H \rightarrow \gamma \gamma, H \rightarrow b, H \rightarrow WW)$

ttH-->bb with Matrix Element Method

	di-lepton		
"SL Cat-I"	"SL Cat-3"	"SL Cat-2"	"DL"
tt → bℓv bqq	tt → bℓν bqq	tt → bℓv bqq + g	$tt \rightarrow b\ell \nu b\ell \nu$
all quarks reconstructed	all quarks <i>but one W-quark</i> reconstructed	all quarks but one W-quark reconstructed	all quarks reconstructed
(+ gluon(s))		$+ \geq I gluon(s)$	

Comparing with MadWeight

22

* looser *b*-tag cuts to enhance MC stat.

The likelihood ratio discriminant (LR)

Take e.g. N_{jet}=6. Define an event-wise discriminant LR

The likelihood ratio discriminant (LR)

• Take e.g. N_{jet}=6. Define an event-wise discriminant LR

CPU time

