CICL RTML Beam-based Alignment

Yanliang Han^{1,2}, Andrea Latina²

¹Shandong University

²CERN

2015-12-03

Previous Results

Integrate the RTML

Beam-based Alignment

Conclusion & Plan

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 ペ
2/25

Previous Results

Integrate the RTML

Beam-based Alignment

Conclusion & Plan

CLIC RTML

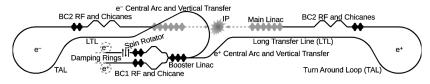


Figure: Sketch of RTML

- RTML connects the damping rings and the main linac
- Match beam properties, like bunch length and energy
- ▶ Two RTMLs with total length of approximately 27 km for each

Table: Beam properties at the start and end of the RTML for 3 TeV machine

Properties [unites]		Start	End
Particle energy [GeV]	E_0	2.86	9
r.m.s. bunch length [μ m]	$\sigma_{ m s}$	1800	44
r.m.s energy spread [%]	$\sigma_{ m E}$	0.12	1.7
Normalized emittance [nm rad]	$\epsilon_{n,x}$	500	600
	$\epsilon_{n,y}$	5	10

We focus on the electron part.

Static Misalignment

	position offset	angle offset	roll
Dipole	ok	Coupling	Coupling
Quarupole	Dispersion	Dispersion	Coupling
Sextupole	Quadrupole, Coupling	Coupling	Couling

Table: The effect of mis-alignment on different magnets

The effect of BPM

- Position offset: Wrong position measurement. We need DFS
- Resolution: Make DFS worse

The vertical emittance budget for static misalignment is $\epsilon_{\gamma} < 8 \text{ nm} \cdot \text{rad}$

- ▶ $5 \text{ nm} \cdot \text{rad}$ the initial emittance
- $\blacktriangleright~1~\mathrm{nm}\cdot\mathrm{rad}$ lattice design emittance growth
- \triangleright 2 nm \cdot rad static alignment emittance growth

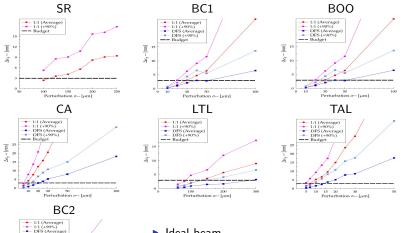
We focus on the quadrupole position offset

イロン イロン イヨン イヨン 三日

Previous Results

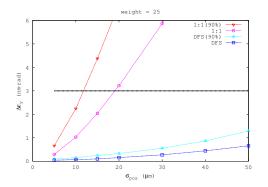
Integrate the RTML

Beam-based Alignment


Conclusion & Plan

Previous Result - Vertical Emittance

 DFS (+90%) -- Budget


Perturbation o-- [µm]

[mu] - ⁶3∇

- Ideal beam
- Quadrupoles and BPMs are misaligned

Previous Result - Vertical Emittance

- Ideal beam
- Quadrupoles and BPMs are misaligned
- Use test beam with different energy

イロン イヨン イヨン イヨン

2

8/25

Figure: Dedicated BBA study on TAL

These results allow us to the whole RTML BBA.

Previous Results

Integrate the RTML

Beam-based Alignment

Conclusion & Plan

<ロ > < 部 > < 言 > < 言 > 差 の Q (~ 9/25

Four parts RTML setup

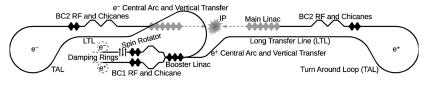
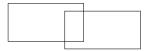



Figure: Sketch of RTML

Before, RTML are divided into four parts due to RF wakefield setup. Each part begin with RF cavity: SR \rightarrow BC1 \rightarrow Booster, CA, VT, LTL, TAL \rightarrow BC2.

It is difficult to use this setup to do the DFS.

So we need to integrate the RTML to one beamline.

Integrate RTML to one beamline

Difficulities:

- In the four part setup, beam can be injected four times. Wakefields are setup dynamically when inject the beam.
- ▶ Now we can only inject beam once, the wakefield must be setup statically.

Solution: Use Spline method to setup the wakefield.

- Calculated the wakefield and save them to disk file
- Create the Spline for transverse and longitudinal plane respectively
- Create the short range wakefield
- Assign the short range wakefield to RF cavity.

Previous Results

Integrate the RTML

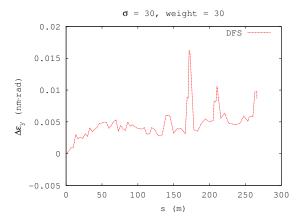
Beam-based Alignment

Conclusion & Plan

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Quadrupole offset $\sigma_{ m pos}$	BPM offset $\sigma_{ m pos}$	BPM resolution $\sigma_{\rm res}$
SR	10	10	0.1
BC1	30	30	1
BOO	30	30	1
CA	30	30	1
VT	30	30	1
TAL	30	30	1
BC2	10	10	0.1

Table: Misalignment level (μm)


Dipole correctors are added to each quadrupoles.

One to one and DFS corrections are applied.

For the DFS, we need to know the dispersion response property.

- Scale the lattice equivalent to use test beam with different energy
- Modify the gradient

Spin Rotator

The emittance growth is very small. Actually even when $\sigma_{\rm pos}=200\mu m$, DFS still works well.

But a problem is hidden by the small emittance growth.

Figure: Vertical emittance growth along lattice

Spin Rotator - z correlation

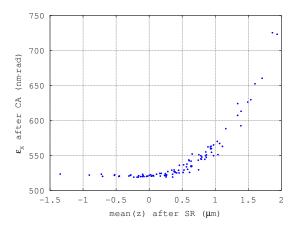
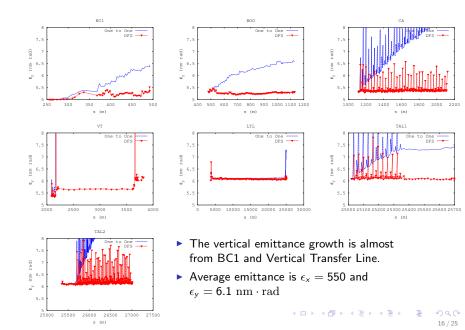
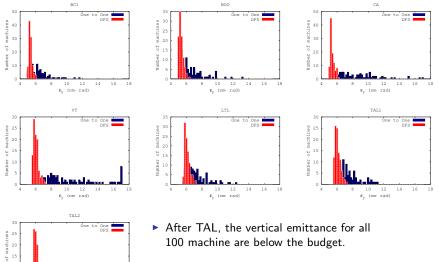


Figure: Average Z vs. emittance for 100 machines


The average Z in perfect lattice is very close to 0.

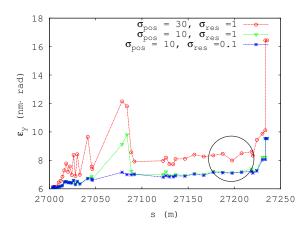
After BBA, average Z become not 0.

There is strong correlation between the average Z after SR and the emittance after CA.


We can not correct the Z now. So we use $\sigma_{\rm pos} = 10 \mu {\rm m}$ and $\sigma_{\rm res} = 0.1 \mu {\rm m}$ for SR.

BC1, BOO, CA, VT, LTL and TAL - Emittance along lattice

BC1, BOO, CA, VT, LTL and TAL - Emittance distribution


ε. (nm· rad)

100 machine are below the budget.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

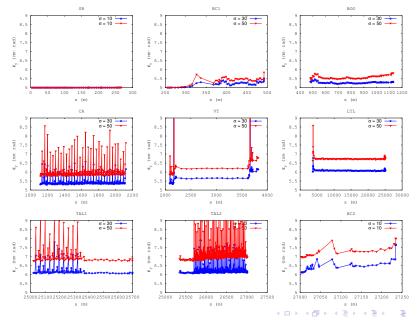
æ

- BC2 is very sensitive to the quadrupole mis-alignment
 - SR \rightarrow TAL, 5.0 \rightarrow 6.1
 - ▶ BC2, 6.1 → 8.4
- The RF cavities are 12 GHz cavities, which introduce strong wakefield.
 - The prealignment must be similar to the main linac's one
 - $\sigma_{\rm pos} = 10$ and $\sigma_{\rm res} = 0.1 \ \mu{\rm m}$ is used

Figure: Average vertical emittance along lattice

BC2 - Parameters optimize

Parameter in OTO, DFS are scanned.


- β_0 , control the fluctuation of corrector strength in OTO
- β_1 , control the fluctuation of corrector strength in DFS
- ω , the weight of DFS

 β_0 and β_1 are scanned in 2D region $[1:7] \times [1:7]$ with integer values.

 ω is scanned in the region [20:140] with step 10.

The quality of BBA in BC2 also rely on how to split the correction bins.

Final Result - $\sigma =$ 30 and 50 $\mu { m m}$

20 / 25

Angle offset

Horizontal and vertical offset in angle are added. σ is 10 μ rad for SR and BC2, σ is 30 μ rad for other sectors.

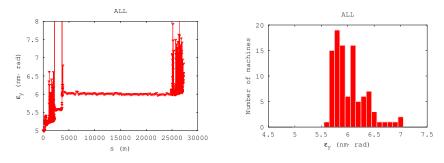


Figure: Average Vertical emittance along the lattice

Figure: Vertical emittance distribution

Quadrupole Roll

The roll errors are added to quadrupoles.. σ is 10 μ rad for SR and BC2, σ is 30 μ rad for other sectors.

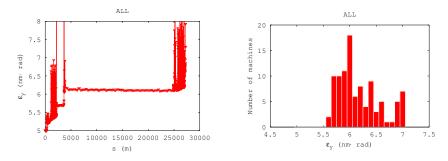


Figure: Average Vertical emittance along the lattice

Figure: Vertical emittance distribution

Dipole Roll

The roll errors are added to dipoles.. σ is 10 μ rad for SR and BC2, σ is 30 μ rad for other sectors.

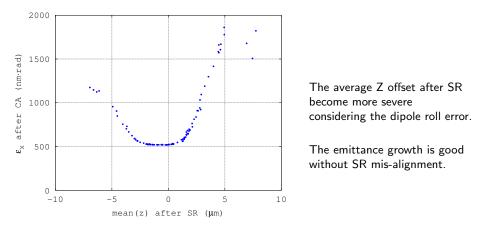


Figure: Average Z vs. emittance for 100 machines

Sextupole offset

We try to add position offset to sextupoles. This make the beam become worse.

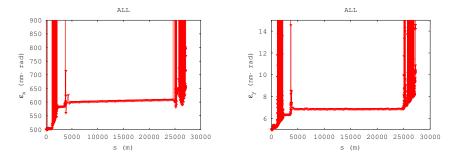


Figure: Average Vertical emittance

Both the horizontal and vertical emittance exceed the budget.

Conclusion & Plan

▶ We successfully applied the BBA on the whole CLIC RTML.

Table: The effect of mis-alignment on different magnets

	position offset	angle offset	roll
Dipole	OK	Coupling	Coupling
Quarupole	OK	OK	ok
Sextupole	Quadrupole, Coupling	Coupling	Couling

This shows that we need study to coupling correction next step.

- Correct the SR z offset (We tried this several days, but there is no solution now.)
- Rotate the beam at some locations.
- Add skew quadrupole sections.