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CLIC RTML

Figure: Sketch of RTML

I RTML connects the damping rings and the main linac
I Match beam properties, like bunch length and energy
I Two RTMLs with total length of approximately 27 km for each

Table: Beam properties at the start and end of the RTML for 3 TeV machine

Properties [unites] Start End
Particle energy [GeV] E0 2.86 9

r.m.s. bunch length [µm] σs 1800 44
r.m.s energy spread [%] σE 0.12 1.7

Normalized emittance [nm rad] εn,x 500 600
εn,y 5 10

We focus on the electron part.
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Static Misalignment

Table: The effect of mis-alignment on different magnets

position offset angle offset roll
Dipole ok Coupling Coupling

Quarupole Dispersion Dispersion Coupling
Sextupole Quadrupole, Coupling Coupling Couling ...

The effect of BPM

I Position offset: Wrong position measurement. We need DFS

I Resolution: Make DFS worse

The vertical emittance budget for static misalignment is εy < 8 nm · rad
I 5 nm · rad - the initial emittance

I 1 nm · rad - lattice design emittance growth

I 2 nm · rad - static alignment emittance growth

We focus on the quadrupole position offset
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Previous Result - Vertical Emittance

SR BC1 BOO

CA LTL TAL

BC2

From Thibaut Lienart
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I Ideal beam

I Quadrupoles and BPMs are misaligned



Previous Result - Vertical Emittance
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Figure: Dedicated BBA study on TAL

I Ideal beam

I Quadrupoles and BPMs
are misaligned

I Use test beam with
different energy

These results allow us to the whole RTML BBA.
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Four parts RTML setup

Figure: Sketch of RTML

Before, RTML are divided into four parts due to RF wakefield setup. Each part
begin with RF cavity: SR → BC1 → Booster, CA, VT, LTL, TAL → BC2.

It is difficult to use this setup to do the DFS.

So we need to integrate the RTML to one beamline.
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Integrate RTML to one beamline

Difficulities:

I In the four part setup, beam can be injected four times. Wakefields are
setup dynamically when inject the beam.

I Now we can only inject beam once, the wakefield must be setup statically.

Solution: Use Spline method to setup the wakefield.

I Calculated the wakefield and save them to disk file

I Create the Spline for transverse and longitudinal plane respectively

I Create the short range wakefield

I Assign the short range wakefield to RF cavity.
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BBA on the whole RTML

Table: Misalignment level (µm)

Quadrupole offset σpos BPM offset σpos BPM resolution σres

SR 10 10 0.1
BC1 30 30 1
BOO 30 30 1
CA 30 30 1
VT 30 30 1
TAL 30 30 1
BC2 10 10 0.1

Dipole correctors are added to each quadrupoles.

One to one and DFS corrections are applied.

For the DFS, we need to know the dispersion response property.

I Scale the lattice - equivalent to use test beam with different energy

I Modify the gradient
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Spin Rotator
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Figure: Vertical emittance growth along lattice

The emittance growth is very
small. Actually even when
σpos = 200µm, DFS still works
well.

But a problem is hidden by the
small emittance growth.
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Spin Rotator - z corrleation
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Figure: Average Z vs. emittance for 100 machines

The average Z in perfect lattice
is very close to 0.

After BBA, average Z become
not 0.

There is strong correlation
between the average Z after SR
and the emittance after CA.

We can not correct the Z now.
So we use σpos = 10µm and
σres = 0.1µm for SR.
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BC1, BOO, CA, VT, LTL and TAL - Emittance along lattice
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I The vertical emittance growth is almost
from BC1 and Vertical Transfer Line.

I Average emittance is εx = 550 and
εy = 6.1 nm · rad



BC1, BOO, CA, VT, LTL and TAL - Emittance distribution
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I After TAL, the vertical emittance for all
100 machine are below the budget.



BC2
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Figure: Average vertical emittance along lattice

I BC2 is very sensitive to the
quadrupole mis-alignment

I SR → TAL, 5.0 → 6.1
I BC2, 6.1 → 8.4

I The RF cavities are 12
GHz cavities, which
introduce strong wakefield.

I The prealignment must
be similar to the main
linac’s one

I σpos = 10 and
σres = 0.1 µm is used
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BC2 - Parameters optimize

Parameter in OTO, DFS are scanned.

I β0, control the fluctuation of corrector strength in OTO

I β1, control the fluctuation of corrector strength in DFS

I ω, the weight of DFS

β0 and β1 are scanned in 2D region [1 : 7]× [1 : 7] with integer values.

ω is scanned in the region [20:140] with step 10.

The quality of BBA in BC2 also rely on how to split the correction bins.
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Final Result - σ = 30 and 50 µm
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Angle offset

Horizontal and vertical offset in angle are added. σ is 10 µrad for SR and BC2,
σ is 30 µrad for other sectors.
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Figure: Average Vertical emittance along
the lattice
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Figure: Vertical emittance distribution
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Quadrupole Roll

The roll errors are added to quadrupoles.. σ is 10 µrad for SR and BC2, σ is
30 µrad for other sectors.
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Figure: Average Vertical emittance along
the lattice
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Figure: Vertical emittance distribution
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Dipole Roll

The roll errors are added to dipoles.. σ is 10 µrad for SR and BC2, σ is
30 µrad for other sectors.
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Figure: Average Z vs. emittance for 100 machines

The average Z offset after SR
become more severe
considering the dipole roll error.

The emittance growth is good
without SR mis-alignment.
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Sextupole offset

We try to add position offset to sextupoles. This make the beam become worse.
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Figure: Average Horizontal emittance
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Figure: Average Vertical emittance

Both the horizontal and vertical emittance exceed the budget.
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Conclusion & Plan

I We successfully applied the BBA on the whole CLIC RTML.

Table: The effect of mis-alignment on different magnets

position offset angle offset roll
Dipole OK Coupling Coupling

Quarupole OK OK ok
Sextupole Quadrupole, Coupling Coupling Couling ...

This shows that we need study to coupling correction next step.

I Correct the SR z offset ( We tried this several days, but there is no
solution now.)

I Rotate the beam at some locations.

I Add skew quadrupole sections.

25 / 25


	Introduction
	Previous Results
	Integrate the RTML
	Beam-based Alignment
	Conclusion & Plan

