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Systematic Uncertainties in the Short
Baseline Neutrino Program at Fermilab

Corey Adams, Yale University
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Why SBN @ FNAL?

Two main advantages:

1) High precision detectors allow multiple physics searches
in the same beam, with the same detectors, at the same
time.

* If you want to make a definitive statement about sterile

oscillations, having multiple signals in the same experiment
can really boost the credibility of “oscillations™ as the culprit.

2) Strongly correlated uncertainties between detectors
allow excellent sensitivity to new signals across analyses.
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SBN Oscillation Sensitivity

 What would a signal
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How to Compute Uncertainty

* We need to propagate
the uncertainty in our
simulations to the
uncertainty in our
event rate predictions.

 How do we know the
error on the number of
events expected that
originates from, say,
uncertainty on hadron
production at the target?
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How to Compute Uncertainty

* We need to propagate

the uncertainty in our
simulations to the
uncertainty in our
event rate predictions.

How do we know the
error on the number of
events expected that
originates from, say, T [

uncertainty on hadron igufe : Th Multilr"si:, an esnti
production at the target? ingredient to error propagation.
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# Example: GENIE
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Figure 9.3: Nucleon Feynman x (xg) pdf used
in the GENIE AGKY model for generating the
kinematics of 2-body N + 7 primary hadronic
systems.
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Figure 9.3: Nucleon Feynman x (xF) pdf used Figure 9.5:  Default zr pdf (solid line) and
in the GENIE AGKY model for generating the tweaked pdfs (dotted lines) resulting from mod-
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systems.

Corey Adams, Yale University Slide 7



# Example: GENIE

3, f
215 04| Constant 0.08296 + 0.004168 "
£ [ Mean  -0.3845+0.01943 g 0.08
008l Sigma  0.3617 + 0.01602 B S
i £
i = 0.06
0.06 —
i ﬁ R0
0.04 00t/
i 0.03F
0.02|- sl ]
N data from Cooper +
L Neutrino 1982 proceedings '{" 0.01
A A A T L
0 -1 -08 06 -04 02 0 02 04 06 08 . . L . . 1 r o
X -1.0-0.8 -0.6 -04-02 0.0 0.2 04
Xp
Figure 9.3: Nucleon Feynman x (ajF) pdf used Figure 9.5:  Default zr pdf (solid line) and
in the GENIE AGKY model for generating the tweaked pdfs (dotted lines) resulting from mod-
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Propagated Uncertainties

v. Flux Fractional Uncertaintes
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Propagated Uncertainties

Uncert. [%]
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Correlated Detectors

The flux and cross-section uncertainties in each
detector are highly correlated.

How to take advantage of that?

Near Detector Far Detector

> >
Reconstructed Energy [GeV] Reconstructed Energy [GeV]
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Correlated Universes

e Ratio of Near to Far should be much less variable in
across all multiverses.
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Grey band 1s ALL ratios plotted on top of each other.
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Covariance Matrix
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m Universes

This is actually the fractional "%
covariance matrix for the flux
multiverse:
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nom.

This is the statistical tool for  NDv.
quantifying the correlated uncertainties
on our background predictions.
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Correlation Matrix

Question: How much does the third C L Ez', ]
analysis bin at the far detector vary in 1)
VEiiEj,
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step with the seventh bin at the near

detector?
s0000[. SBND, 6.6e+20 POT (100m) A
E HK -y,

18000E"  gtatistical Uncertainty Only EK Sy,
>1eooo E E= NC Single |
@ 14000 =v,cc
= 12000 = Dirt
%10000 B Cosmics
2 5000 a] =B
W 6000 /= |

£ T600, 6.6e+20 POT (600m) v,

; HK -y,

18001 Statistical Uncertainty Only EK Sy,
- 1600 — E= NC Single |
8 1400 &=, cc
< 120 I Dirt
* B Cosmics
£2]
c
[
>
L

1 1.5 2 25 3
Reconstructed Energy (GeV)

>

)]
=
o
o
N

3 GeV
200 MeV
3 GeV
200 MeV

Corey Adams, Yale University Slide 14



Lot
M

Correlation Matrix

Question: How much does the third o b 1,)
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Simulating a Signal

P(v, — v,) = sin®26,,. x sin | 1.267 Am
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SBN Oscillation Probability
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Simulating a Signal

P(v, — v,) = sin®26,,. x sin | 1.267 Am
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P(v, — v,) = sin®26,,. x sin | 1.267 Am
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# Covariance Matrix

e Correlation Matrix 1s great for understanding the
near to far behavior of uncertainties, but the related
full covariance matrix is used for sensitivity
calculations:

x> =) [N, (Am? sin®20)] (B 1 [V]

519

(Am?,sin”20)]

1.

Etotal _ Eflu:r; + [xsec + Ecosmic + EB.I.T.E + Edet + Estat
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Covariance Matrix

e Correlation Matrix 1s great for understanding the
near to far behavior of uncertainties, but the related
full covariance matrix is used for sensitivity
calculations:

(Am?,sin”20)]

519

Q.
Etotal :@+ Ecosmic + EB.I.T.E + Edet + Estat

Computed from
Monte Carlo

x> =) [N, (Am? sin®20)] (B 1 [V]
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Covariance Matrix

e Correlation Matrix 1s great for understanding the
near to far behavior of uncertainties, but the related
full covariance matrix is used for sensitivity
calculations:

x> =) [N, (Am? sin®20)] (B 1 [V]

519

(Am?,sin”20)]

1.

Etotal _ Eflu:c + [rsec _|_ Edet + Estat

Measured 1n
Data
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# Covariance Matrix

e Correlation Matrix 1s great for understanding the
near to far behavior of uncertainties, but the related
full covariance matrix is used for sensitivity
calculations:

x> =) [N, (Am? sin®20)] (B 1 [V]

519

(Am?,sin”20)]

1.7

Etotal _ Eflu:r; + [xsec + Ecosmic + EB.I.T.E Estat

Will be measured
with Monte Carlo
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Covariance Matrix

e Correlation Matrix 1s great for understanding the
near to far behavior of uncertainties, but the related
full covariance matrix is used for sensitivity
calculations:

X> =) [NL,(Am?, sin®26)](E/S ) TN, (Am?, sin®26)]

519
1.7

Etotal _ Eflu:r; + [xsec + Ecosmic + EB.I.T.E + Edet + Estat

Compute chi-squared at a range of points in the
sin226, Am?2 space, and find the contours where the

chi2 crosses statistical sensitivity levels.
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Path Forward

e Plenty of work to do to get ready for data ...

— We are exploring ways to quantify our resolution of
mixing parameters based on observed signals.

— What can we do with joint analyses?

e Access to muon neutrino disappearance, muon to electron
neutrino oscillation, and neutral current disappearance in the
same detectors, in the same beam, at the same time.

e Expect the unexpected?

— With sensitive detectors, a tightly constrained beam, and
well quantified uncertainties we should be able to make
definitive statements about what's going on 1n Short
Baseline physics ... whatever that may be.
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