

Systematic Uncertainties in the Short Baseline Neutrino Program at Fermilab

Corey Adams, Yale University

Why SBN @ FNAL?

Two main advantages:

- 1) High precision detectors allow multiple physics searches in the same beam, with the same detectors, at the same time.
 - If you want to make a definitive statement about sterile oscillations, having multiple signals in the same experiment can really boost the credibility of "oscillations" as the culprit.
- 2) Strongly correlated uncertainties between detectors allow excellent sensitivity to new signals across analyses.

SBN Oscillation Sensitivity

- What would a signal look like?
- What's the significance of that signal?
 - What uncertainties in the background estimate matter, and how do you propagate them to the final calculation?
- How to accurately model and account for correlated uncertainties?

How to Compute Uncertainty

- We need to propagate the uncertainty in our simulations to the uncertainty in our event rate predictions.
- How do we know the error on the number of events expected that originates from, say, uncertainty on hadron production at the target?

How to Compute Uncertainty

- We need to propagate the uncertainty in our simulations to the uncertainty in our event rate predictions.
- How do we know the error on the number of events expected that originates from, say, uncertainty on hadron production at the target?

Figure 1: The Multiverse, an essential ingredient to error propagation.

Example: GENIE

Figure 9.3: Nucleon Feynman x (x_F) pdf used in the GENIE AGKY model for generating the kinematics of 2-body $N + \pi$ primary hadronic systems.

Example: GENIE

Figure 9.3: Nucleon Feynman x (x_F) pdf used in the GENIE AGKY model for generating the kinematics of 2-body $N+\pi$ primary hadronic systems.

Figure 9.5: Default x_F pdf (solid line) and tweaked pdfs (dotted lines) resulting from modifying the $x_{AGKY}^{xF1\pi}$ systematic parameter by ± 1 .

Example: GENIE

Figure 9.3: Nucleon Feynman x (x_F) pdf used in the GENIE AGKY model for generating the kinematics of 2-body $N + \pi$ primary hadronic systems.

Figure 9.5: Default x_F pdf (solid line) and tweaked pdfs (dotted lines) resulting from modifying the $x_{AGKY}^{xF1\pi}$ systematic parameter by ± 1 .

Propagated Uncertainties

Source of Uncertainty	$ u_{\mu}$	ν_e
π^+ production	14.7%	9.3%
π^- production	0.0%	0.0%
K^+ production	0.9%	11.5%
K^0 production	0.0%	2.1%
Horn field	2.2%	0.6%
Nucleon cross sections	2.8%	3.3%
Pion cross sections	1.2%	0.8%

Propagated Uncertainties

Parameter	1σ Uncertainty (%)
M_A^{CCQE}	-15% + 25%
M_A^{CCRES}	$\pm 20\%$
M_A^{NCRES}	$\pm 20\%$
$R_{bkg}^{\nu p,CC1\pi}$	$\pm 50\%$
$R_{bkg}^{ u p,CC2\pi}$	$\pm 50\%$
$R_{bkg}^{\nu n,CC1\pi}$	$\pm 50\%$
$R_{bkg}^{\nu n,CC2\pi}$	$\pm 50\%$
$R_{bkg}^{\nu p,NC1\pi}$	$\pm 50\%$
$R_{bkg}^{ u p,NC2\pi}$	$\pm 50\%$
$R_{bka}^{\nu n,NC1\pi}$	$\pm 50\%$
$R_{bkg}^{ u n,NC2\pi}$	$\pm 50\%$
NC	$\pm 25\%$
DIS-NuclMod	Model switch

Correlated Detectors

The flux and cross-section uncertainties in each detector are highly correlated.

How to take advantage of that?

Correlated Universes

• Ratio of Near to Far should be **much** less variable in across all multiverses.

Grey band is ALL ratios plotted on top of each other.

$$E_{i,j} = \sum_{m \text{ Universes}} [N_{nom.}^i - N_{\text{Univ. }m}^i][N_{nom.}^j - N_{\text{Univ. }m}^j]$$

This is actually the fractional covariance matrix for the flux multiverse:

$$F_{i,j} \equiv \frac{E_{i,j}}{N_{nom}^i N_{nom}^j}$$

This is the statistical tool for ND quantifying the correlated uncertainties on our background predictions.

Correlation Matrix

Question: How much does the third analysis bin at the far detector vary in step with the seventh bin at the near detector?

Correlation Matrix

Question: How much does the third analysis bin at the far detector vary in step with the seventh bin at the near detector?

Answer: A lot! \sim 70% (by eye).

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}2\theta_{\mu e} \times \sin\left(1.267 \frac{\text{GeV}}{\text{eV}^{2} \text{km}} \frac{L}{E} \Delta m_{41}^{2}\right)$$

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}2\theta_{\mu e} \times \sin\left(1.267 \frac{\text{GeV}}{\text{eV}^{2} \text{km}} \frac{L}{E} \Delta m_{41}^{2}\right)$$

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}2\theta_{\mu e} \times \sin\left(1.267 \frac{\text{GeV}}{\text{eV}^{2} \text{km}} \frac{L}{E} \Delta m_{41}^{2}\right)$$

The muon neutrino spectrum is scaled neutrino-by-neutrino to form a signal simulation for each mixing angle and mass splitting combination.

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}2\theta_{\mu e} \times \sin\left(1.267 \frac{\text{GeV}}{\text{eV}^{2} \text{km}} \frac{L}{E} \Delta m_{41}^{2}\right)$$

 Correlation Matrix is great for understanding the near to far behavior of uncertainties, but the related full covariance matrix is used for sensitivity calculations:

$$\chi^{2} \equiv \sum_{i,j} \left[N_{sig}^{i} (\Delta m^{2}, \sin^{2}2\theta) \right] (E_{i,j}^{total})^{-1} \left[N_{sig}^{j} (\Delta m^{2}, \sin^{2}2\theta) \right]$$

$$E^{total} = E^{flux} + E^{xsec} + E^{cosmic} + E^{B.I.T.E} + E^{det} + E^{stat}$$

• Correlation Matrix is great for understanding the near to far behavior of uncertainties, but the related **full covariance matrix** is used for sensitivity calculations:

$$\chi^{2} \equiv \sum_{i,j} \left[N_{sig}^{i} (\Delta m^{2}, \sin^{2}2\theta) \right] (E_{i,j}^{total})^{-1} \left[N_{sig}^{j} (\Delta m^{2}, \sin^{2}2\theta) \right]$$

$$E^{total} = E^{flux} + E^{xsec} + E^{cosmic} + E^{B.I.T.E} + E^{det} + E^{stat}$$
 Computed from Monte Carlo

 Correlation Matrix is great for understanding the near to far behavior of uncertainties, but the related full covariance matrix is used for sensitivity calculations:

$$\chi^{2} \equiv \sum_{i,j} \left[N_{sig}^{i} (\Delta m^{2}, \sin^{2}2\theta) \right] (E_{i,j}^{total})^{-1} \left[N_{sig}^{j} (\Delta m^{2}, \sin^{2}2\theta) \right]$$

$$E^{total} = E^{flux} + E^{xsec} + E^{cosmic} + E^{B.I.T.E} + E^{det} + E^{stat}$$
 Measured in Data

• Correlation Matrix is great for understanding the near to far behavior of uncertainties, but the related **full covariance matrix** is used for sensitivity calculations:

$$\chi^{2} \equiv \sum_{i,j} \left[N_{sig}^{i} (\Delta m^{2}, \sin^{2}2\theta) \right] (E_{i,j}^{total})^{-1} \left[N_{sig}^{j} (\Delta m^{2}, \sin^{2}2\theta) \right]$$

$$E^{total} = E^{flux} + E^{xsec} + E^{cosmic} + E^{B.I.T.E} + E^{det} + E^{stat}$$
 Will be measured with Monte Carlo

• Correlation Matrix is great for understanding the near to far behavior of uncertainties, but the related **full covariance matrix** is used for sensitivity calculations:

$$\chi^{2} \equiv \sum_{i,j} \left[N_{sig}^{i} (\Delta m^{2}, \sin^{2}2\theta) \right] (E_{i,j}^{total})^{-1} \left[N_{sig}^{j} (\Delta m^{2}, \sin^{2}2\theta) \right]$$

$$E^{total} = E^{flux} + E^{xsec} + E^{cosmic} + E^{B.I.T.E} + E^{det} + E^{stat}$$

Compute chi-squared at a range of points in the $\sin^2 2\theta$, Δm^2 space, and find the contours where the chi2 crosses statistical sensitivity levels.

Oscillation Sensitivity

This plot tells us the ability to observe a signal is present on top of the background for the SBN Program, but **doesn't** say: "What's the resolution of the parameters of that signal?"

Path Forward

- Plenty of work to do to get ready for data ...
 - We are exploring ways to quantify our resolution of mixing parameters based on observed signals.
 - What can we do with joint analyses?
 - Access to muon neutrino disappearance, muon to electron neutrino oscillation, and neutral current disappearance in the same detectors, in the same beam, at the same time.
- Expect the unexpected?
 - With sensitive detectors, a tightly constrained beam, and well quantified uncertainties we should be able to make definitive statements about what's going on in Short Baseline physics ... whatever that may be.