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Why SBN @ FNAL?

Two main advantages:
1) High precision detectors allow multiple physics searches 

in the same beam, with the same detectors, at the same 
time.
• If you want to make a definitive statement about sterile 

oscillations, having multiple signals in the same experiment 
can really boost the credibility of “oscillations” as the culprit.

2) Strongly correlated uncertainties between detectors 
allow excellent sensitivity to new signals across analyses.



 Corey Adams, Yale University Slide 3

SBN Oscillation Sensitivity
● What would a signal 

look like?
● What's the significance 

of that signal?
– What uncertainties in the 

background estimate 
matter, and how do you 
propagate them to the 
final calculation?

● How to accurately model 
and account for 
correlated uncertainties?
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How to Compute Uncertainty
● We need to propagate 

the uncertainty in our 
simulations to the 
uncertainty in our 
event rate predictions.

● How do we know the 
error on the number of 
events expected that 
originates from, say, 
uncertainty on hadron 
production at the target?
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How to Compute Uncertainty
● We need to propagate 

the uncertainty in our 
simulations to the 
uncertainty in our 
event rate predictions.

● How do we know the 
error on the number of 
events expected that 
originates from, say, 
uncertainty on hadron 
production at the target?

Figure 1: The Multiverse, an essential 
ingredient to error propagation.
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Example: GENIE
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Example: GENIE
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Example: GENIE

Reconstructed Energy [GeV]

Nominal Histogram
Multiverse 1 

Multiverse 2 
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Propagated Uncertainties

Reconstructed Energy [GeV]

RMS across 
universes within 
a bin.
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Propagated Uncertainties
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Correlated Detectors

The flux and cross-section uncertainties in each 
detector are highly correlated.

How to take advantage of that?

Reconstructed Energy [GeV] Reconstructed Energy [GeV]

Far DetectorFar DetectorNear Detector
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Correlated Universes
● Ratio of Near to Far should be much less variable in 

across all multiverses.

Grey band is ALL ratios plotted on top of each other.
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Covariance Matrix

This is actually the fractional 
covariance matrix for the flux 

multiverse:

This is the statistical tool for 
quantifying the correlated uncertainties 

on our background predictions.
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Question: How much does the third 
analysis bin at the far detector vary in 
step with the seventh bin at the near 
detector? 

Correlation Matrix
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Question: How much does the third 
analysis bin at the far detector vary in 
step with the seventh bin at the near 
detector? 

Correlation Matrix

Answer: A lot!  ~70%  (by eye).
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Simulating a Signal
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Simulating a Signal
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Simulating a Signal

The muon neutrino 
spectrum is scaled 
neutrino-by-neutrino to 
form a signal simulation 
for each mixing angle 
and mass splitting 
combination. 
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Simulating a Signal
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Covariance Matrix 
● Correlation Matrix is great for understanding the 

near to far behavior of uncertainties, but the related 
full covariance matrix is used for sensitivity 
calculations:
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Covariance Matrix 
● Correlation Matrix is great for understanding the 

near to far behavior of uncertainties, but the related 
full covariance matrix is used for sensitivity 
calculations:

Computed from 
Monte Carlo
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Covariance Matrix 
● Correlation Matrix is great for understanding the 

near to far behavior of uncertainties, but the related 
full covariance matrix is used for sensitivity 
calculations:

Measured in 
Data
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Covariance Matrix 
● Correlation Matrix is great for understanding the 

near to far behavior of uncertainties, but the related 
full covariance matrix is used for sensitivity 
calculations:

Will be measured 
with Monte Carlo
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Covariance Matrix 
● Correlation Matrix is great for understanding the 

near to far behavior of uncertainties, but the related 
full covariance matrix is used for sensitivity 
calculations:

Compute chi-squared at a range of points in the 
sin22θ, Δm2 space, and find the contours where the 
chi2 crosses statistical sensitivity levels.
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Oscillation Sensitivity

This plot tells us the 
ability to observe a 
signal is present on 
top of the background 
for the SBN Program, 
but doesn't say: 
“What's the resolution 
of the parameters of 
that signal?”
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● Plenty of work to do to get ready for data ...
– We are exploring ways to quantify our resolution of 

mixing parameters based on observed signals.

– What can we do with joint analyses?
● Access to muon neutrino disappearance, muon to electron 

neutrino oscillation, and neutral current disappearance in the 
same detectors, in the same beam, at the same time.

● Expect the unexpected?
– With sensitive detectors, a tightly constrained beam, and 

well quantified uncertainties we should be able to make 
definitive statements about what's going on in Short 
Baseline physics … whatever that may be.

Path Forward
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