

Searches for Sterile Neutrinos at MINOS/MINOS+

Adam Aurisano
University of Cincinnati
for the MINOS/MINOS+
Collaboration

PITT PACC SBN Physics Workshop

26 January 2016

MINOS/MINOS+ Overview

- MINOS (Main Injector Neutrino Oscillation Search)
- NuMI neutrino beam from 120 GeV Main Injector-accelerated protons
- Neutrino energy spectrum measured with two functionally identical ironscintillator tracking calorimeters
 - Near Detector at Fermilab
 - 1 km from target
 - 1 kton mass
 - Far Detector, deep underground in the Soudan mine
 - 735 km from target
 - 5.4 kton mass
- Compare Far Detector observations with extrapolation of Near Detector measurement to study neutrino oscillations.

MINOS/MINOS+ Overview

- From 2005-2012, the NuMI beam operated in low energy mode (MINOS era)
- Since 2013, the NuMI beam has operated in the medium energy mode (MINOS+ era)
 - Higher energy ideal for long-baseline sterile neutrino searches.

Status of Sterile Neutrinos

- LSND and MiniBooNE have both seen excesses in $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance at short baselines.
 - Consistent with large ∆m² sterile neutrino oscillations.
- No evidence for sterile oscillation seen by disappearance experiments.
- Unlike in disappearance experiments, oscillation probability in appearance experiments is quadratically suppressed by the matrix elements in the amplitude.
 - Must resolve this conflict → sterile neutrinos can complicate measuring CP violation at DUNE or HyperK.
- In this talk, I will discuss two strategies for searching for sterile neutrinos at long baselines.

Phys. Rev. D 64, 112007 (2001)

Phys. Rev. Lett.110, 161801

26 January 2016 Adam Aurisano 4

Long-Baseline Sterile Searches

Strategy 1:

- Neutral current interaction rate is the same for the three active flavors.
 - Standard oscillations do not change NC rate.
- $\nu_{\mu} \rightarrow \nu_{s}$ oscillations reduce the NC rate as ν_{s} do not interact in the detector.
- Look for NC disappearance relative to 3flavor predictions.
- Model independent

Strategy 2:

- Sterile oscillations add modulations to standard 3-flavor picture, even in CC interactions.
- Fit both NC and CC spectra to the 4-flavor model.
- Constrain sterile mixing parameters

Event Topologies

Poorly Reconstructed Events

High rate in Near Detector requires temporal and spatial slicing → may cause split events

Minimize with pre-selection cuts on:

- Fraction of pulse height in slice
- The maximum number of consecutive planes

Remaining data/MC disagreement is taken as a systematic uncertainty.

Fake NC event

CC and NC Selection

- MINOS was optimized for identifying v_{μ} CC interactions.
- Identifying NC events is more difficult.
 - 89% efficiency and 61% purity at the FD.
 - Main background is inelastic v_{μ} CC events.
 - 97% of v_e CC events are selected as NC.

Model Independent Search

Far/Near Extrapolation

- The measured Near Detector energy spectrum is used to predict the Far Detector spectrum via the Far/Near Ratio method.
- The method uses the ND data without relying on a specific parametrization.
- Correct each energy bin in the FD MC using the ND data/MC differences as a scale factor.
- Simple, robust to most systematic uncertainties.

FD Energy Spectrum

- Oscillate CC events using the 2012 MINOS ν_{μ} CC disappearance best fit.
- 2563 ν_{μ} -CC-like events in FD.
- 1211 NC-like events in FD.

Comparison to 3-Flavor Prediction

- Compare the NC energy spectrum in FD data (10.56x10²⁰ POT exposure) with the expectation from standard 3-flavor neutrino oscillation physics using the R statistic.
 - No NC disappearance
 → R = 1.

$$R = rac{N_{data} - \sum B_{CC}}{S_{NC}}$$
 Predicted NC interaction signal

$$\frac{0 - 40 \text{ GeV}}{R = 1.05 + /- 0.04 + /- 0.10}$$

$$\frac{0 - 3 \text{ GeV}}{R = 1.10 + -0.06 + 0.07}$$

No evidence for NC disappearance

4-Flavor Search

4-Flavor Oscillations

• Small Δm_{41}^2 :

- Oscillations at high energies in the Far Detector.
- No oscillations at the Near Detector

• Medium Δm_{41}^2 :

- Rapid oscillations at the Far Detector average out.
- No oscillations at the Near Detector.
- Counting experiment

Large ∆m²₄₁:

- Rapid oscillations at the Far Detector average out.
- Oscillations at the Near Detector affect extrapolation to the Far Detector.

MINOS 4-Flavor Analysis Strategy

- Assume 3+1 model
 - One additional sterile neutrino and an additional neutrino mass scale.
 - Extend mixing matrix with extra angles and phases.
- For simplicity, fix parameters MINOS is not sensitive to $(\delta_1, \delta_2, \delta_3, \text{ and } \theta_{14})$ to zero.
- Fit both the NC and CC spectra to determine θ_{23} , θ_{24} , θ_{34} , Δm^2_{32} and Δm^2_{41} .
- To account for ND oscillations, fit oscillated F/N MC ratio directly to F/N data ratio.
 - Include a constraint on ND rate.
- Move to a covariance matrix based likelihood function to allow for an increased number of systematic uncertainties.

Varying Baseline

Because we now allow for short-baseline oscillations, it is crucial that we account for the baseline varying due to the distribution of hadron decay points within the decay pipe.

Neutrino Distance Travelled to ND (km)

Beam Systematics

- Due to ND oscillations, it is not possible to constrain the beam flux using a fit to ND data.
 - Need to reassess beam systematics.
- Fit a FLUKA simulation of the NA49 target to the BMPT parametrization.
- Vary fit parameters within their errors to create a collection of physically feasible alternate invariant differential cross-section parametrizations.
- Scale up the errors given by the fit until the collection of alternate parametrizations cover the difference between the FLUKA MC and NA49 data.
- Use this collection of alternate parametrizations to reweight the ND and FD neutrino spectra and create a covariance matrix.
- The resulting error band on the F/N ratio is small.

ND Acceptance Systematics

- Acceptance uncertainties are determined by comparing the effect of varying cuts on data/MC at the ND compared to the nominal cuts.
- Examined the effect of:
 - Varying the fiducial volume.
 - Varying the containment criteria.
 - Excluding tracks ending near the join between the calorimeter and spectrometer.
 - Varying how close tracks can come to the coil hole.
- Together, these have the largest effect on our sensitivity.

Total Systematics

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} (o_i - e_i)^T [V^{-1}]_{ij} (o_j - e_j)$$

o_i = Observed events in bin i

e_i = Expected events in bin I

V = Covariance matrix

26 January 2016 Adam Aurisano 19

MINOS Disappearance Limit

Internal non-excluded region due to degenerate solutions where $\Delta m_{32}^2 \sim \Delta m_{41}^2$, $\theta_{23} \sim \pi/2$, $\theta_{24} \sim \pi/4$, and $\theta_{34} \sim \pi/2$

MINOS 90% C.L. exclusion limit ranges over 6 orders of magnitude and is the strongest constraint on $\nu_{_{\mu}}$ disappearance into $\nu_{_{s}}$ for $\Delta m^{2}_{_{41}}$ < 1 eV²

Comparison to Appearance Results

Working with Daya Bay to produce a MINOS/Daya Bay combined limit.

- With MiniBooNE neutrino mode.
- Assuming the 3+1 model, an accelerator-based disappearance result (θ₂₄) can be combined with a reactor based disappearance results (θ₁₄) to compare with appearance results.
- Combined MINOS with a Bugey limit, provided by Patrick Huber, computed with GLoBES 2012 using new reactor fluxes.
- Increases tension between null and signal results for ∆m² < 1 eV².

Comparison to Appearance Results

Working on a sterile search using MINOS antineutrino running and MINOS/MINOS+ antineutrino contamination during neutrino running

- With MiniBooNE antineutrino mode.
- Assuming the 3+1 model, and CPT conservations, SBL neutrino and antineutrino oscillations are identical.
- Combined MINOS with a Bugey limit, provided by Patrick Huber, computed with GLoBES 2012 using new reactor fluxes.
- Increases tension between null and signal results for Δm² < 1 eV².

The Future

26 January 2016 Adam Aurisano 23

Conclusions

- Searches for sterile neutrinos at long-baselines are complementary to short-baseline searches.
 - Test a region of parameter short-baseline searches are less sensitive to.
- Accounting for ND oscillations, improving systematic uncertainties, and careful handling of 4-flavor degeneracies has allowed us to extend the MINOS 90% C.L. exclusion limit over 6 orders of magnitude in Δm_{41}^2 .
 - Strongest constraint on ν_{μ} disappearance to ν_{s} for Δm^{2}_{41} < 1 eV².
- Combined these results with Bugey to allow for comparison with shortbaseline appearance experiments.
 - Increases the tension between signal and null results for $\Delta m_{41}^2 < 1 \text{ eV}^2$.
 - Working with Daya Bay to produce a MINOS/Daya Bay combination as well.
- Currently working to extend these results using MINOS+ data and to search for sterile neutrinos using antineutrinos in MINOS/MINOS+ data for the first time.

Backup

NC Event Selection

NC/CC event separation achieved via cuts on topological variables.

Discard events with length > 47 planes

Discard events with track > 6 planes longer than the shower

- Same selection applied to data and MC in the FD
- CC events are selected from events failing NC selection

CC Event Selection

- CC and NC events are separated using a 4 variable kNN.
 - Number of scintillator planes in a track.
 - Mean pulse height of all track hits.
 - Ratio of low pulse height to high pulse height hits.
 - Ratio of pulse height on the track to all hits.

