Updates to Flux Prediction: MiniBooNE

Athula Wickremasinghe University of Pittsburgh

SBN Oscillation Physics Workshop Jan 26th, 2016

Outline:

1. Motivation for long targets analysis

2. Overview:

=> HARP setup, track reconstruction and targets
3. pi+ production yield measurements :

=> 20 cm and 40 cm long targets data

4. Finding a new model to explain long target data:

- => Thin target pi+ production cross section from VERTEX4 reconstructions.
- => SW model parameters and comparisons

5. MC yield predictions for long targets:

- => Overview of GEANT4 simulation
- => Long targets MC-data comparison

6. Muon Neutrino flux

1. Motivation for long targets analysis

* Better to check HARP pion production data on 20.0 cm and 40.0 cm Be targets

Next:

1. Motivation for long targets analysis

2. Overview:

=> HARP setup, track reconstruction and targets

3. pi+ production yield measurements :

=> 20 cm and 40 cm long targets data

4. Finding a new model to explain long target data:

- => Thin target pi+ production cross section from VERTEX4 reconstructions.
- => SW model parameters and comparisons

5. *MC* yield predictions for long targets:

=> Overview of GEANT4 simulation

=> Long targets MC-data comparison

6. Muon Neutrino flux

Overview of the HARP setup

RPC

FTP

TPC

p2 and p4 momentum reconstructions

<u>Correlation of p2 and p4 momentum with the target length</u>

HARP measurements from three Be targets

DATA	Beam radius cut (reduce the edge effect)	P.O.T			
MB100	0.4 cm	622791			
MB50	0.4 cm	814749			
Empty	0.4 cm	475776			
Be5	1.0 cm	13070000			
Empty	1.0 cm	1990000			

Next:

- 1. Motivation for long targets analysis
- 2. Overview:
 - => HARP setup, track reconstruction and targets

3. pi+ production yield measurements :

=> 20 cm and 40 cm long targets data

4. Finding a new model to explain long target data:
=> Thin target pi+ production cross section from VERTEX4 reconstructions.
=> SW model parameters and comparisons
5. MC yield predictions for long targets:
=> Overview of GEANT4 simulation
=> Long targets MC-data comparison
6. Muon Neutrino flux

<u>Yield measurement overview</u>

<u>MB50 data</u>

<u>MB100 data</u>

Next:

- 1. Motivation for long targets analysis
- 2. Overview:
- => HARP setup, track reconstruction and targets
 3. pi+ production yield measurements :
 => 20 cm and 40 cm long targets data
- 4. Finding a new model to explain long target data:
 - => Thin target pi+ production cross section from VERTEX4 reconstructions.
 - => SW model parameters and comparisons
- **5.** MC yield predictions for long targets:
 - => Overview of GEANT4 simulation
 - => Long targets MC-data comparison
- 6. Muon Neutrino flux

Thin target cross section measurement overview

$$\frac{d^2 \sigma^{\alpha}(p,\theta)}{dp d\Omega} = \frac{A}{N_A.\rho.t} \cdot \frac{1}{\Delta p.\Delta\Omega} \cdot M_{\alpha.\alpha'}^{-1} \cdot \left(M_{p\theta.p'\theta'}^{-1} \cdot \left[\frac{N^{\alpha'}(p',\theta')}{N_{pot}} - \frac{N_{empty}^{\alpha'}(p',\theta')}{N_{pot}^{empty}} \right] \right)$$

t: Thickness of the target p: Target density A: Molar mass of the target

Changes from the yield measurements :

*Add cross section factor.

* Tertiary particle correction: used every tertiary particle that created within the target or outside the target.

Real challenge:

* Understanding the incoming beam effects on the first drift chamber.

Be5 cross section comparison :

Fitting HARP data with two Sanford Wang models

<u>1. Sanford-Wang model (SW:thesis)</u>: $\frac{d^2\sigma}{dpd\Omega}(p,\theta) = c_1 \cdot p^{c_2} \left(1 - \frac{p}{p_{\rm B} - c_9}\right) e^{-g(p,\theta)}$ Where

$$g(p,\theta) = c_3 \cdot \frac{p^{c_4}}{p_{\rm B}^{c_5}} + c_6 \theta \left(p - c_7 \cdot p_{\rm B} \cdot \cos^{c_8} \theta \right)$$

Beam momentum = p_beam = 8.89 GeV/c

Data : Fitting Be5 p2 and E910 (SW thesis)

c1 = 220.7; c2 = 1.080; c3 = 1.0; c4 = 1.978; c5 = 1.320; c6 = 5.572; c7 = 0.08678; c8 = 9.686; c9 = 1.0;

Ref: A. A. Aguilar-Arevalo, et al., The Neutrino Flux prediction at MiniBooNE, Phys.Rev. D79 (2009) 072002

2. Extended SW model (ESW):

 $\frac{d^2\sigma}{dpd\Omega}(p,\theta) = \exp[A]p^{c_2}(1-\frac{p}{p_{\text{beam}}}) \times (1+\frac{p}{p_{\text{beam}}})^{c_9\theta(p-c_7p_{\text{beam}}\cos^{c_8}\theta)}$ Where

Where

$$A = c_1 - c_3 \frac{p^{c_4}}{p_{\text{beam}}^{c_5}} - c_6 \theta (p - c_7 p_{\text{beam}} \cos^{c_8} \theta)$$

Ref: M. G. Catanesi et al. [HARP Collaboration], arXiv:hep-ex/0702024

01/26/2016

<u>Data :Be5 p2-data (ESW:p2)</u>

c1 = 5.13; c2 = 1.87; c3 = 6.67; c4 = c5 = 1.56; c6 = 11.9; c7 = 0.173; c8 = 19.8; c9 = 16.0;

Ref: M. G. Catanesi et al. [HARP Collaboration], arXiv:hep-ex/0702024

Data :Be5 p4-data (ESW:p4)

C1 = 5.39; C2 = 2.30; C3 = 7.19 C4 = C5 = 1.17 C6 = 11.2; C7 = 0.191; C8 = 18.4; C9 = 13.2

ESW:p4 fitting algorithm

Diagonal elements only

- Absorption correction (sys) ٠
- *Tertiary particle correction (sys)*
- **Overall** normalization •

Parameter	Best fit value
c_1	5.39 ± 0.32
c_2	2.30 ± 0.29
c_3	7.19 ± 0.68
$c_4 = c_5$	1.17 ± 0.22
c_6	11.2 ± 0.6
c_7	0.191 ± 0.008
c_8	18.4 ± 1.8
Cg	13.2 ± 1.4

covariance matrices

- Absorption correction (stat) ٠
- *Tertiary particle correction (stat)*
- Reconstruction efficiency (stat)
- Particle ID (sys) •
- *e-veto (stat)* •
- *Momentum migration (sys + stat)*

Chi2/dof = 125.4 / 70

Correlation coefficients of ESW parameters

parameters	c_1	c_2	<i>C</i> 3	$c_4 = c_5$	<i>c</i> ₆	C7	C7	Cg
c_1	1							
c_2	0.848	1						
<i>c</i> ₃	0.711	0.926	1					
$c_4 = c_5$	-0.975	-0.884	-0.697	1				
<i>c</i> ₆	-0.507	-0.056	0.157	0.485	1			
<i>C</i> 7	-0.161	0.090	-0.029	-0.032	0.085	1		
c_8	0.089	0.028	-0.084	-0.184	-0.418	0.723	1	
c_9	-0.534	-0.112	0.157	0.539	0.977	0.0316	-0.390	1

01/26/2016

SBN workshop - Pittsburgh

<u>Best fitted Be5 cross section comparison :</u>

Next:

- 1. Motivation for long targets analysis
- 2. Overview:

=> HARP setup, track reconstruction and targets 3. pi+ production yield measurements :

=> 20 cm and 40 cm long targets data

4. Finding a new model to explain long target data:

- => Thin target pi+ production cross section from VERTEX4 reconstructions.
- => SW model parameters and comparisons

5. *MC* yield predictions for long targets:

=> Overview of GEANT4 simulation

=> Long targets MC-data comparison

6. Muon Neutrino flux

<u>Data - BooNE MC comparison : MB50 (20 cm) pi+ yield</u>

<u> Data - BooNE MC comparison : MB100 (40 cm) pi+ yield</u>

Next:

- 1. Motivation for long targets analysis
- 2. Overview:

=> HARP setup, track reconstruction and targets
3. pi+ production yield measurements :

=> 20 cm and 40 cm long targets data

4. Finding a new model to explain long target data:

- =>Thin target pi+ production cross section from VERTEX4 reconstructions.
- => SW model parameters and comparisons

5. *MC* yield predictions for long targets:

- => Overview of GEANT4 simulation
- => Long targets MC-data comparison

6. Muon Neutrino flux

Muon neutrino flux comparison:

SW:p2 & E910 = 2007 April generated flux

MC statistics for p2 and p4: *P.O.T* =5,000,000,000

Total flux (0-3 GeV) = 5.47 E-10 (v_{μ} /POT/cm²) Integrated ratio = (ESW:p4)/(SW:thesis) = 1.061 (6% higher than 2007 April flux)

* This will help to reduce systematics on CCQE cross section measurements.
* 2007 flux has a 10% error on it but this study will help to reduce the error.

Thank you !

Backup slides

<u> Data - BooNE MC comparison : Be5 yield</u>

v_{μ} flux ratios

90-120 (mrad) 60-90 (mrad) 30-60 (mrad) ..6 1.6 MC_{p4}/MC_{thesis} 1.6 MC_{p4}/MC_{thesis} MC_{p4}/MC_{thesis} 1.4 1.4 1.4 .2 0.8 0.8 0.8 0.6 0.6 0.6 90-120 (mrad) 60-90 (mrad) 30-60 (mrad) 0.4 0.4 0.4 ··•· Harp5 -- Harp5 ··•· Harp5 --- Harp50 --- Harp50 --- Harp50 0.2 0.2 0.2 ∩Ē _____ ٥l 0 4 4.5 5 1.5 2 2.5 3 3.5 3.5 4.5 5 2.5 3 3.5 4.5 5 1.5 2 2.5 3 4 2 4 1.5 p (GeV/c) p (GeV/c) p (GeV/c) 180-210 (mrad) 120-150 (mrad) 150-180 (mrad) 1.6 1.6MC_{p4}/MC_{thesis} 1.6 MC_{p4}/MC_{thesis} MC_{p4}/MC_{thesis} 0.8 0.8 0.8 0.6 0.6 0.6 180-210 (mrad) 120-150 (mrad) 150-180 (mrad) 0.4 0.4 0.4 Harp5 ... Harp5 -- Harp5 --- Harp50 --- Harp50 --- Harp50 0.2 0.2 0.2 0 **0**^{[[]} ٥Ľ 1.5 2 2.5 3.5 4 4.5 3 5 1 1.5 2 2.5 3 3.5 4 4.5 5 3.5 4 4.5 5 2.5 3 1.5 2 p (GeV/c) p (GeV/c) p (GeV/c)

<u>MC Yield ratio plots for all three targets:</u> 30 <= θ <=210 mrad

MC Yield ratio plots for all three targets:

Vertex2 momentum reconstruction : long target

