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• Lot of progress in HEFT approach since first NLO 
calculation [Dawson, Dittmaier, Spira ’98]: 
• NNLO [de Florian, Mazzitelli ’13, Grigo, Melnikov, Steinhauser ’14]  
• NLO+NNLL [Shao, Li, Li, Wang ’13],  
• NNLO+NNLL [de Florian, Mazzitelli ’15],  

remaining scale uncertainty 5-6% 
• Mass effects beyond LO only partially understood: 

• in NLO real radiation [Maltoni, Vryonidou, Zaro ’14]: -10% 
• from 1/mt2  expansion [Grigo, Hoff, Steinhauser ’15]:  

+/-10% at NLO, +/- 5% at NNLO 
• PDF + αs uncertainties (PDF4LHC15): 3-4% [Javier’s talk in Nov.] 
• Largest uncertainty from missing mass effects,  
☞ full NLO calculation needed

Recap & Motivation
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• gg ➝ HHg and qg ➝ HHq one-loop matrix elements from 
GoSam [Greiner, Heinrich, Jahn, Luisoni, Mastrolia, Ossola, Peraro, 
Schlenk, von Soden-Fraunhofen, Tramontano] 

• Dipole subtraction [Catani, Seymour ’97]  
• Phase-space integration using parton-level Monte-Carlo 
• Checks: 

• gg ➝ Hg etc. reproduced and compared to Sushi 
[Harlander, Liebler, Mantler ’13] 

• Independence of dipole-cut α parameter [Nagy ’03] 

• Compare with MG5_aMC@NLO result  
[Maltoni, Vryonidou, Zaro ’14]       ☞ later in this talk

Effects from NLO real radiation ✅
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• Generate diagrams with qgraf [Nogueira ’93] ✅ 
• Generate amplitude within extended GoSam 

framework using form [Vermaseren] ✅ 
• (Partial) reduction to master integrals  

with Reduze [von Manteuffel, Studerus] ✅ 

• Checks: 
• Amplitude generated in second framework ✅ 
• gg ➝ H reproduced and compared to Sushi ✅ 

• Numerical evaluation of (master) integrals with 
SecDec [Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, TZ]  

☞ needs more time + validation ⏳

Effects from virtual two-loop amplitude

meanwhile… 4



• full real-emission matrix elements and dipoles 
• virtual corrections as asymptotic expansion in 1/mt2 

with q2e/exp [Harlander, Seidensticker, Seidensticker] + 
Reduze [von Manteuffel, Studerus] + matad [Steinhauser] 

• not directly comparable with [Grigo, Hoff, Steinhauser], 
(real radiation treated differently, expansion parameter (mH/mt)2)

Approximate top-mass effects at NLO

u(k1)

g(k2)

u(k3)

H(k4)
H(k5)

g

t

t

t

t

g(k1)

g(k2)

g(k3)

H(k4)

H(k5)

g
H

tt

t
g(k1)

g(k2)
g(k3)

H(k4)

H(k5)

g t

t

t

t

u(k1)
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Figure 2. Examples of diagrams contributing to the real radiation part at NLO. The dia-

grams in the second row do not lead to infrared singularities.

2.2.4 Real radiation

For the real radiation, we use the Catani-Seymour dipole formalism [54], i.e. we write

the cross section as
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There are four partonic channels for the real radiation contribution to the cross section:

�r(gg ! hh+ g), �r(gq ! hh+ q), �r(gq̄ ! hh+ q̄), �r(qq̄ ! hh+ g) . (2.43)

The qq̄ channel is infrared finite.

In the following we will use a phase space restriction parameter ↵ to restrict the dipole

subtraction to a limited region, as suggested in Ref. [55]. The general formula for the

infrared insertion operator is given by
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✅
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Thus we are left with only spin correlation, which we evaluate by formally projecting

onto |µ, ⌫i = |µi ⌦ |⌫i so that

Dai,b =
1

2pa · pi
1

xi,ab
heh1,eh2; eai, b||µ0, ⌫ 0ihµ0|Vai,b |µih⌫ 0||⌫ihµ, ⌫||eh1,eh2; eai, bi, (2.63)

where hµ||⌫i = P

pol.(✏
µ)⇤✏⌫ and

hµ, ⌫||eh1,eh2; eai, bi = Mµ⌫(epai, pb, eph1, eph2). (2.64)

Making use of the decomposition (2.1), the dipoles can be expressed in terms of the

form factors F1,2 evaluated in D = 4.2 For the numerical evaluation we implement the

analytic results for the LO form factors from Ref. [5].

The relevant splitting functions are given by
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for the gg ! ghh channel, and
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for qg ! qhh (q̄g ! q̄hh).

2.3 Heavy-top expansion

For comparison we perform the calculation additionally in the limit of a large top-quark

mass using the method of asymptotic expansion [56, 57]. Thus we write the partonic

di↵erential cross section as

d�exp,N =
N
X

k=0

d�(k)

✓

⇤
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◆2k

, (2.67)

where ⇤ 2 �p
s,
p
t,
p
u,mh

 

stands for any combination of external momenta, and

determine the first few terms (up to N = 3) of this asymptotic series. Choosing N = 0

2 Note that for gg ! hh the spin correlation is indeed non-trivial, i.e. the dipoles cannot be
written as LO cross section times splitting function. In particular, there is a non-vanishing mixed
term proportional to ReF ⇤

1 F2.
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reproduces to the usual e↵ective theory approach, without the need to calculate Wilson

coe�cients separately, however.

To generate the diagrams we again use qgraf [37]. The generation and expansion of

the amplitude in small external momenta is then performed using q2e/exp [58, 59]

and leads to two-loop vacuum integrals inserted into tree-level diagrams as well as one-

loop vacuum integrals inserted into massless one-loop triangles. Whereas the vacuum

integrals are evaluated with Matad [60], the massless integrals can be expressed in

terms of a single one-loop bubble, which we achieve with the help of Reduze [40].

Again, the algebraic processing of the amplitude is done with Form [38, 39].

We can now obtain di↵erent approximations by combining the exact and expanded

matrix elements in various ways:

(1) Series expansion only for virtual corrections, rescaled with exact born:
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+O (✏) (2.68)

The first identity is valid because the colour structure of the exact and the expanded

LO cross section are identical, and the second because the sum in the bracket is

finite. Thus one needs to know only the ✏ dependence of the expanded LO cross

section in this approximation.

There is some ambiguity when to do the rescaling (before/after phase-space inte-

gration, convolution with the PDFs etc.). We opt to do it on a fully di↵erential

level, i.e. the rescaling is done for each phase-space point individually.

(2) Virtual corrections as above, expand and rescale real radiation as well:
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X
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(2.69)

It seems arbitrary which momenta to use for the born matrix elements entering the

rescaling factor applied to d�R
exp,N on the di↵erential level. One possible choice is a

weighted average between the rescaling factors used for the dipoles.3 This ensures

3 As weight we use 1
zi3

= p1·p2

pi·p3
, i = 1, 2.
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Thus we are left with only spin correlation, which we evaluate by formally projecting
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analytic results for the LO form factors from Ref. [5].

The relevant splitting functions are given by

hµ|Vg
a

g
i

,b(xi,ab)|⌫i = 16⇡µ2✏↵s CA



�gµ⌫
✓

xi,ab

1� xi,ab
+ xi,ab(1� xi,ab)

◆

+ (1� ✏)
1� xi,ab

xi,ab

pa · pb
pi · pa pi · pb

✓

pµi �
pipa
pbpa

pµb

◆✓

p⌫i �
pipa
pbpa

p⌫b

◆�

(2.65)

for the gg ! ghh channel, and

hµ|Vq
a

q
i

,b(xi,ab)|⌫i = 8⇡µ2✏↵s CF

h

�gµ⌫xi,ab

+
1� xi,ab

xi,ab

2pa · pb
pi · pa pi · pb

✓

pµi �
pipa
pbpa

pµb

◆✓

p⌫i �
pipa
pbpa

p⌫b

◆�

(2.66)
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2.3 Heavy-top expansion

For comparison we perform the calculation additionally in the limit of a large top-quark
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written as LO cross section times splitting function. In particular, there is a non-vanishing mixed
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• „approx“ ≘ rescaled expansion with N=0  
• Known negative mass effects from real radiation

Mass effects in MHH distribution (I)
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Mass effects in pT distribution (I)
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• Slight tendency that -10% effect persists, but: 
spoilt cancellations? threshold effects?

Mass effects in MHH distribution (II)
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Mass effects in pT distribution (II)
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• full real-emission matrix elements 
• virtual corrections in HEFT (≘ expansion with N=0) 
• mt=172.5 GeV, μ0=mHH, μR=μF ∈ [μ0/2, 2μ0] 
• PDF4LHC15_nlo_30_pdfas PDFs with (without) αs variation 

• compare to MG5_aMC@NLO results (for mH = 125 GeV): 

(borrowed from Eleni’s talk on Nov. 19)
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Results for other channels

NLO results for other channels at 8 and 13 TeV 
PDF4LHC15 PDFs 
MadGraph5_aMC@NLO

Preliminary results for cross-check
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gg ! HH total cross section [fb]

mH = 124.5 GeV mH = 125.0 GeV mH = 125.09 GeV mH = 125.5 GeVp
s = 7 TeV 5.047 5.011+19%

�16% ± 4.5%(±4.2%) 5.004 4.975p
s = 8 TeV 7.343 7.292+18%

�15% ± 4.2%(±3.8%) 7.283 7.241p
s = 13 TeV 25.13 24.97+15%

�14% ± 3.2%(±2.8%) 24.94 24.80p
s = 14 TeV 29.85 29.66+18%

�15% ± 3.1%(±2.6%) 29.62 29.47
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• Reproduced -10% mass effects from NLO real radiation 

• Setup for full NLO calculation ready 

• Results with full top-mass dependence within close reach

Conclusions
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