Top mass effects at NLO

Tom Zirke Max-Planck Institute for Physics, Munich

with Sophia Borowka, Nicolas Greiner, Gudrun Heinrich, Stephen Jones, Matthias Kerner, Johannes Schlenk, Ulrich Schubert

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) HH Subgroup Meeting December 8, 2015

Recap & Motivation

- Lot of progress in HEFT approach since first NLO calculation [Dawson, Dittmaier, Spira '98]:
 - NNLO [de Florian, Mazzitelli '13, Grigo, Melnikov, Steinhauser '14]
 - NLO+NNLL [Shao, Li, Li, Wang '13],
 - NNLO+NNLL [de Florian, Mazzitelli '15], remaining scale uncertainty 5-6%
- Mass effects beyond LO only partially understood:
 - in NLO real radiation [Maltoni, Vryonidou, Zaro '14]: -10%
 - from 1/mt² expansion [Grigo, Hoff, Steinhauser '15]: +/-10% at NLO, +/- 5% at NNLO
- PDF + α_s uncertainties (PDF4LHC15): 3-4% [Javier's talk in Nov.]
- Largest uncertainty from missing mass effects,
 full NLO calculation needed

Effects from NLO real radiation V

- gg → HHg and qg → HHq one-loop matrix elements from GoSam [Greiner, Heinrich, Jahn, Luisoni, Mastrolia, Ossola, Peraro, Schlenk, von Soden-Fraunhofen, Tramontano]
- Dipole subtraction [Catani, Seymour '97]
- Phase-space integration using parton-level Monte-Carlo
- Checks:
 - $gg \rightarrow Hg$ etc. reproduced and compared to Sushi [Harlander, Liebler, Mantler '13]
 - Independence of dipole-cut α parameter [Nagy '03]
 - Compare with MG5_aMC@NLO result
 [Maltoni, Vryonidou, Zaro '14]
 In this talk

Effects from virtual two-loop amplitude

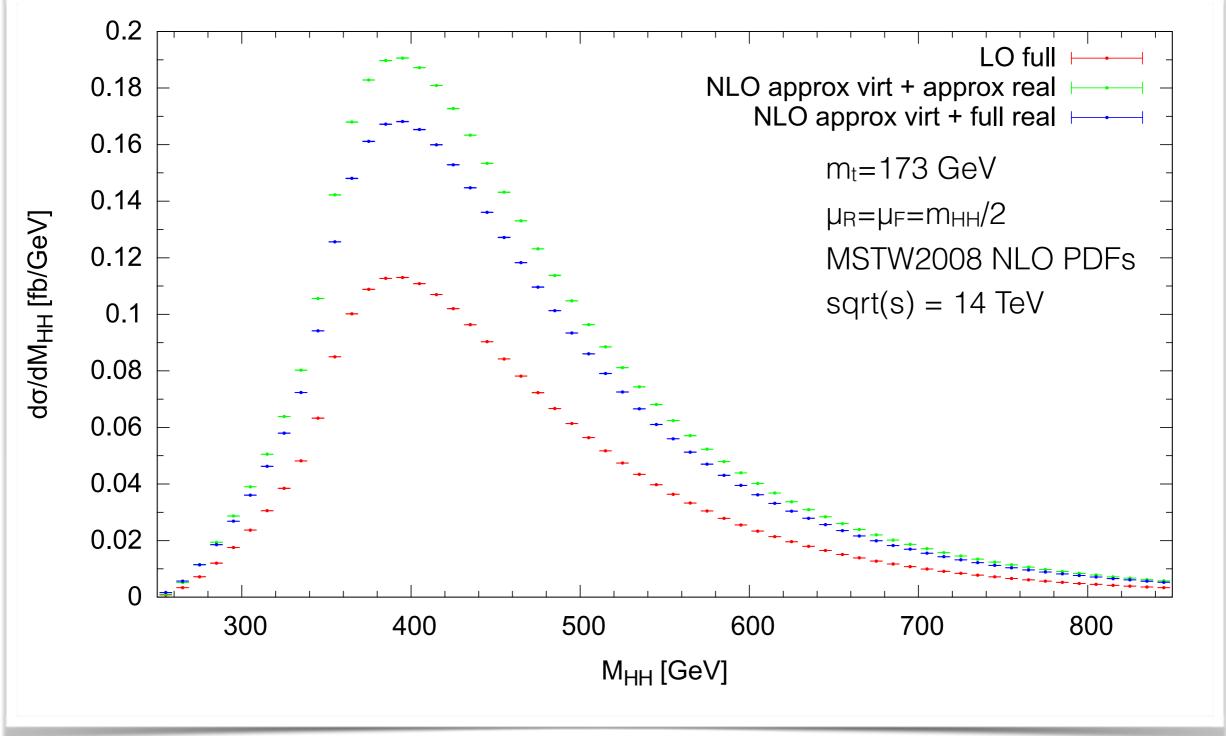
- Generate diagrams with **ggraf** [Nogueira '93] 🔽
- Generate amplitude within extended GoSam framework using form [Vermaseren]
- (Partial) reduction to master integrals
 with Reduze [von Manteuffel, Studerus]
- Checks:
 - Amplitude generated in second framework
 - $gg \rightarrow H$ reproduced and compared to Sushi ∇
- Numerical evaluation of (master) integrals with
 SecDec [Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, TZ]
 meeds more time + validation X

meanwhile...

Approximate top-mass effects at NLO

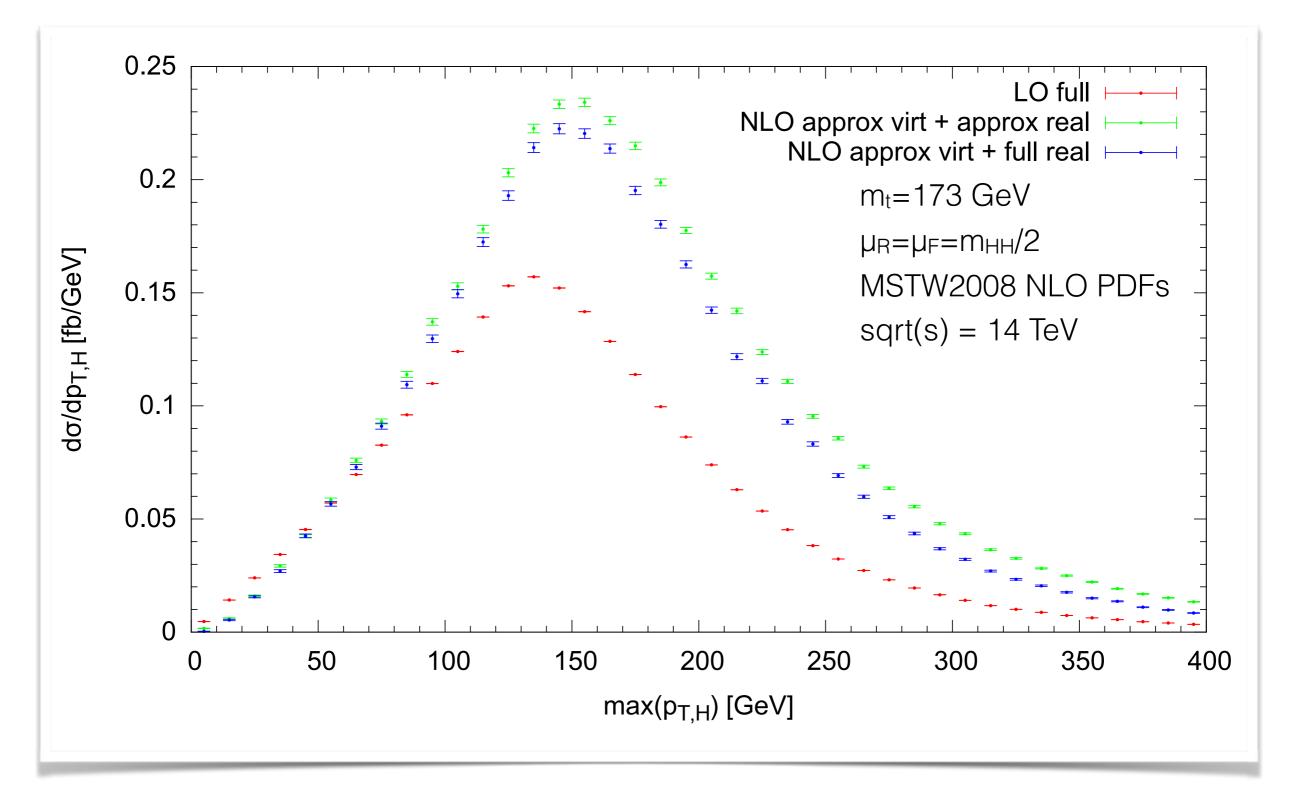
$$\sigma^{NLO}(p) = \int d\phi_3 \left[\left(d\sigma^R(p) \right)_{\epsilon=0} - \left(\sum_{\text{dipoles}} d\sigma^{LO}(p) \otimes dV_{\text{dipole}} \right)_{\epsilon=0} \right] \checkmark$$
$$+ \int d\phi_2 \left[d\sigma^V(p) + d\sigma^{LO}(p) \otimes \mathbf{I} \right]_{\epsilon=0}$$
$$+ \int_0^1 dx \int d\phi_2 \left[d\sigma^{LO}(xp) \otimes (\mathbf{P} + \mathbf{K}) (x) \right]_{\epsilon=0} \checkmark$$

$$d\sigma^{V} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I} \approx d\sigma^{V}_{\exp,N} \frac{d\sigma^{LO}(\epsilon)}{d\sigma^{LO}_{\exp,N}(\epsilon)} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I}$$

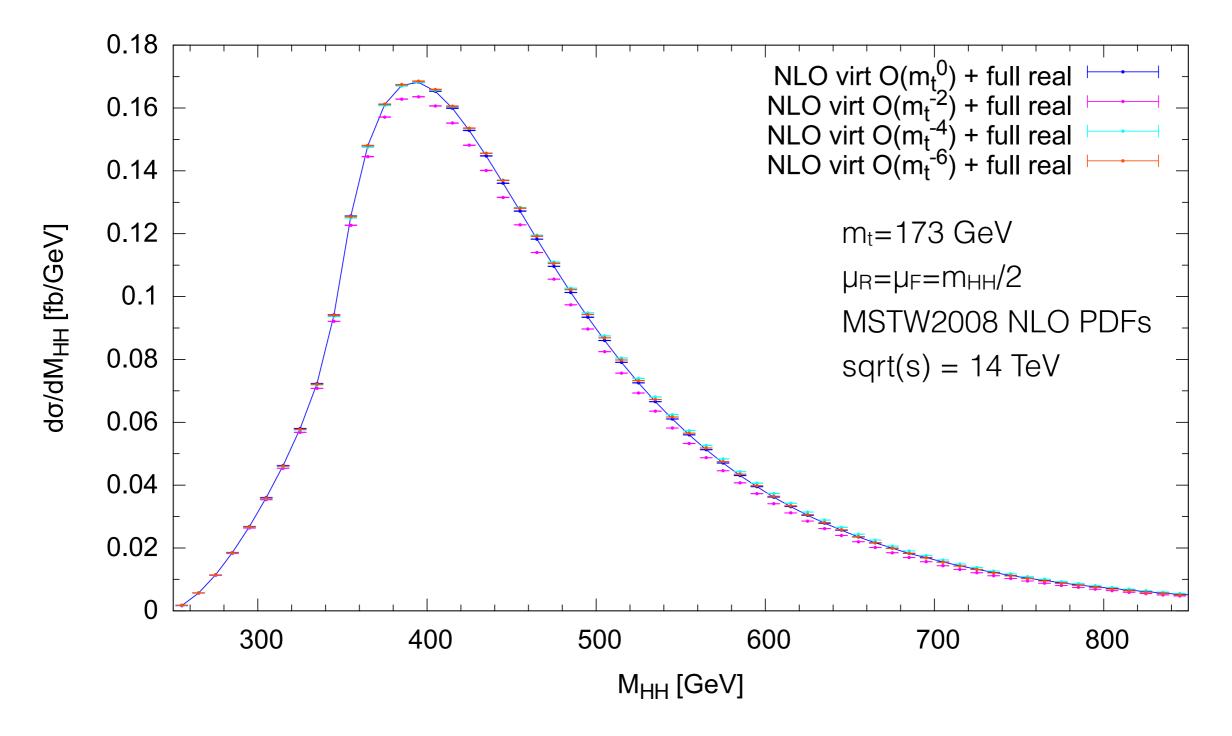

$$= \left(d\sigma^{V}_{\exp,N} + d\sigma^{LO}_{\exp,N}(\epsilon) \otimes \mathbf{I}\right) \frac{d\sigma^{LO}(\epsilon)}{d\sigma^{LO}_{\exp,N}(\epsilon)}$$

$$= \left(d\sigma^{V}_{\exp,N} + d\sigma^{LO}_{\exp,N}(\epsilon) \otimes \mathbf{I}\right) \frac{d\sigma^{LO}(\epsilon=0)}{d\sigma^{LO}_{\exp,N}(\epsilon=0)} + \mathcal{O}(\epsilon)$$

$$\Lambda \in \left\{\sqrt{s}, \sqrt{t}, \sqrt{u}, m_{h}\right\}$$

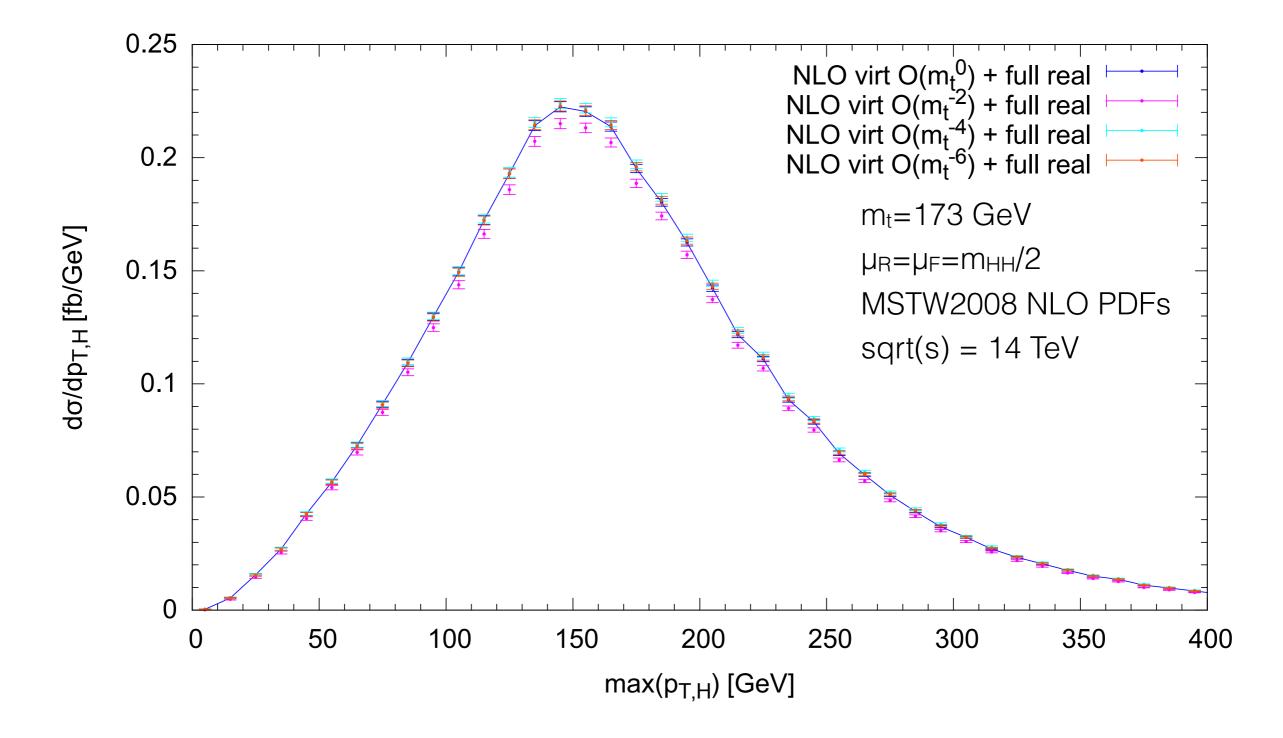

- full real-emission matrix elements and dipoles
- virtual corrections as asymptotic expansion in 1/mt² with q2e/exp [Harlander, Seidensticker, Seidensticker] + Reduze [von Manteuffel, Studerus] + matad [Steinhauser]
- not directly comparable with [Grigo, Hoff, Steinhauser], (real radiation treated differently, expansion parameter (m_H/m_t)²)

Mass effects in M_{HH} distribution (I)



- Known negative mass effects from real radiation

Mass effects in p_T distribution (I)



Mass effects in M_{HH} distribution (II)

 Slight tendency that -10% effect persists, but: spoilt cancellations? threshold effects?

Mass effects in p_T distribution (II)

Preliminary results for cross-check

- full real-emission matrix elements
- virtual corrections in HEFT (= expansion with N=0)
- $m_t = 172.5 \text{ GeV}, \mu_0 = m_{HH,} \mu_R = \mu_F \in [\mu_0/2, 2\mu_0]$
- PDF4LHC15_nlo_30_pdfas PDFs with (without) α_s variation

	$gg \to HH$ total cross section [fb]			
	$m_H = 124.5 \text{ GeV}$	$m_H = 125.0 \text{ GeV}$	$m_H = 125.09 \text{ GeV}$	$m_H = 125.5 \text{ GeV}$
$\sqrt{s} = 7 \text{ TeV}$	5.047	$5.011^{+19\%}_{-16\%} \pm 4.5\% (\pm 4.2\%)$	5.004	4.975
$\sqrt{s} = 8 \text{ TeV}$	7.343	$7.292^{+18\%}_{-15\%} \pm 4.2\% (\pm 3.8\%)$		7.241
$\sqrt{s} = 13 \text{ TeV}$	25.13	$24.97^{+15\%}_{-14\%} \pm 3.2\% (\pm 2.8\%)$	24.94	24.80
$\sqrt{s} = 14 \text{ TeV}$	29.85	$29.66^{+18\%}_{-15\%} \pm 3.1\% (\pm 2.6\%)$	29.62	29.47

• compare to MG5_aMC@NLO results (for $m_H = 125 \text{ GeV}$):

	$\sqrt{s} = 8 \mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$
	NLO	NLO
HH (NLO_approx)	$7.28^{+18\%}_{-15\%}\pm0.7\%$	$24.9{+}15\%_{-13\%}\pm0.5\%$

(borrowed from Eleni's talk on Nov. 19)

Conclusions

- Reproduced -10% mass effects from NLO real radiation
- Setup for full NLO calculation ready
- Results with full top-mass dependence within close reach