

- 1. Brief historical recall
- 2. Proven performances
- 3. System characteristics
- 4. Cavities arrangement.
- 5. Available space and layout in the ring.
- 6. Issue with pick up.
- 7. Layout in equipment rooms.
- 8. Required parts and installations.
- 9. Installation planning.

Brief historical recall

- PSB RF system consolidation requires heavy interventions in existing RF systems :
 - \rightarrow intensity and energy increase \rightarrow Linac 4.
 - → consolidation of ageing equipment.
- Deep and costly interventions required on the CO2 and CO4 RF systems:
 - → Finemet system studies launched to face new requirements and changes.
- Studies converged into a new approach which:
 - → maximize the advantages of the wideband response of Finemet
 - → use of solid-state amplifiers.
- A wide range of issues had to be addressed:
 - RF power production
 - Radiation hardness of solid-state devices
 - Dedicated low-level electronics for active cancellation of beam-induced voltages
 - Dedicated low-level electronics allowing multi-harmonic operation.
 - Beam stability issues
- New system performance finally also allow controlled blow-up:
 - → abandon C16 upgrade.

The project study phase is now completed, results reported at the project review and full deployment plan endorsed by the management.

Proven performances

- Beam tests proved the system ability to produce intense beams equivalent to what achieved with standard operation.
- System capable of operation at h1, h2 and h10.
- All system components are largely within thermal and current limits even at high duty-cycles.
- Effects of radiation on the amplifiers in the ring can be mitigated and readjustments needed every 10 years.
- The LL digital electronics compensate beam loading and maintain beam stability.
- Extrapolations indicate that operation will be possible at 2GeV and beam intensities as high as 2•10¹³ ppp.

System characteristics.

- Modular system based on wideband, solid-state driven identical cells.
- High performance digital Low Level electronics:
 - → Multi-harmonic operation (8, 12 or more beam revolution frequency harmonics)
 - → Voltage allocation at the most appropriate frequency
 - → Active cancellation of beam induced voltage.
 - → Active gap impedance reduction
- Ample margins and reserves.
 - RF power amplifier designed to ensure operation with 2 broken RF Mosfets out of 16.
 - System designed to ensure operation with 6 broken cells per ring.
- PLC interlocks individually tracing the characteristics of the RF Mosfets, RF amplifiers, radiation effects, etc.
- PLC / Low Level electronics communication ensures best performance with available number of cells.

System characteristics.

Parameter	Value
Operation Frequency	1 MHz to 18 MHz
Operation mode	Single frequency or multi-harmonic
Single cell voltage Freq < 4 MHz Freq > 4 MHz	700 V _{Pk} Linearly derate to 250 V _{Pk}
Total nominal voltage Freq < 4 MHz Freq > 4 MHz	24 kV _{Pk} Linearly derating to 4 kV _{Pk}
Cell length	130 mm
Number of cells in a cavity	6
Number of cavities per ring	6

Cavities arrangement (preliminary).

Two 6-gaps units can be installed in each section and ring.

• Amplifier installed on one side only. Other side available for future improvements.

Cavities and power amplifiers cooled by demineralized water.

Negligible contribution to air heating.

Available space in the machine.

Four sections presently attributed to RF systems: 5L1, 7L1, 10L1 and 13L1

Use of three sections for new RF systems: 5L1, 7L1 and 13L1. Section 10L1 in stand-by.

7L1

Issue with BPP5L1 pick-up.

Section 5L1 presently filled with:

- The C16 RF system
- The pick-up BPP5L1

Both to be removed to allow the new installation.

Existing pick-up installed in sections:

1L5, 8L1, 11L2 : not used

• 5L1, 14L4 : 1 in use and 1 spare

Proposed future pick-up arrangement:

• 1L5 : not used may be

removed

• 8L1, 11L2 : 1 in use and 1 spare

5L1 : removed

: not used may be

removed

Proposed strategy agreed by

• RF: A. Blas and A. Findlay

• BI : L. Soby

• OP : B. Mikulec

During 2015-2016 YETS

Head amplifiers installed in 8L1 and tested during 2016

tested during 2016.

During 2016-2017 EYETS

Head amplifiers will be installed in

11L2 and tested during 2017.

Removals, changes etc. to be discussed with TE/VSC

Rack Layout: FINEMET control for one Section

- Racks for control electronic and interlock: section 5L1, 7L1 and 13L1
- Each cavity 1 control rack
- For one section (4 cavities) 4
 control racks plus one interlock
 rack
- Three systems 15 control racks

Rack Layout: Power Supplies for one Section

- Racks for power supplies: section 5L1, 7L1 and 13L1
- Each cavity 2 racks with power supplies one section 8 racks
- Three systems 24 racks with power supplies

Booster 361/1

BRF 1 LAYOUT LS2

BRF2 LAYOUT LS2: FINEMET SECTION 5L1

BAT Layout LS2 Access Period 7L1

Required parts and installations.

 The modular system has the advantage of being mostly composed of standardized units:

• The 6-gaps cavity	24 units + 2 spare
---------------------	--------------------

- PLC interlocks
 24 units + 1 spares
- Additional components/contributions will be:
 - Cooling water distribution S. Moccia informed (EN-CV) :≈ 48m³/hr per section
 - Cabling G. Minchev informed (EN-EL) : Remove≈ 2000 / install ≈ 1200 cables
 - Power distribution & cabling J. Devine informed (EN-EL)
 - Timing and intranet
 - Rack integration BRF1 / BRF2 /BAT
- Dedicated test place for parts acceptance, test and maintenance.

Installation planning.

All system elements will be assembled, tested in the test place and ready for installation before beginning of LS2.

6 months to remove equipment

8 Months commissioning/testing

