BFPP Losses during 2015 Heavy Ion Operation

M. Schaumann

Acknowledgments: J.Jowett, T.Mertens, A.Lechner

ColUSM 04/12/2015

Outline

- Introduction
- Losses around the ring (2015 vs. 2011)
- Bumps and losses observed in each IP
 - IP1
 - IP5 incl. test of increased amplitude 11L5
 - IP2
 - IP8

Secondary Beams Produced in Pb-Pb Collisions

Bound-free pair production (BFPP)

 ${}^{208}\mathrm{Pb}^{82+} + {}^{208}\mathrm{Pb}^{82+} \longrightarrow {}^{208}\mathrm{Pb}^{82+} + {}^{208}\mathrm{Pb}^{81+} + \mathrm{e^+}$

have large interaction cross-sections in Pb-Pb collisions and are the main contribution to fast Pb-Pb burn-off (hadronic cross-section is 8b):

$$\sigma_{c,tot}(3.5Z \text{ TeV}) = \sigma_{c,BFPP} + \sigma_{c,EMD} + \sigma_{c,hadron}$$
$$\approx 253.6 \text{ b} + 195.6 \text{ b}$$

Secondary Beams Produced in Pb-Pb Collisions

These reactions change the charge-to-mass ratio of the ions, which changes bending in (main) dipoles: $B\rho = p/q$

Intense secondary beams are produced that impact in a superconducting magnet downstream from the IP.
⇒ Luminosity limit, if deposited power exceeds quench limit.

Risk Mitigation with Orbit Bumps – Test 2011

Orbit bumps are now used to move the secondary beam losses into the empty cryostats around IP1 and 5 in order to reduce risk of quench.

Loss Pattern around the Ring, 4 (3) colliding IPs

IP1

IP 1/5 unit bumps

Correctors used for bumps 7_9_13 ACBCH7.R1B1, ACBH9.R1B1, ACBH13.R1B1 ACBCH7.L1B2, ACBH9.L1B2, ACBH13.L1B2

T. Mertens

BFPP Losses around IP1

Bump Correctors: 7-9-13

Bump Amplitude: -3.2mm (L) / -2.75mm (R)

The BFPP bumps move the losses deep into the empty cryostat

Losses in last BLM on MB are at least a few 10 times smaller

FLUKA Simulations of BLM Signals

The BLM signals suggest that the situation on both sides is similar to the blue simulation.

IR1/5: shifting the BFPP loss location to the connection cryostat

Run 2 optics (assuming $\beta^* = 80 \text{ cm}$):

T. Mertens

Some uncertainty on the position $(\sim 1-2 m)$ due to beam screen tolerances etc.

AL (ColUSM)

7 / 15

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

IP5

BFPP Losses around IP5

Bump Correctors: **7-9-13** Bump Amplitude: **-3.0mm (L) / -2.6mm (R)**

The right BFPP bump moves the losses into the empty cryostat. Losses are still in MB on the left side.

FLUKA Simulations of BLM Signals

The BLM signals suggest that

- **right of IP5** the beam impacts as shown in blue simulation.
- left of IP5 the impact seems to be more similar to the red simulation, but one BLM further downstream.

Increase Bump 11L5 to move loss peak into cryostat

BLMEI.11L5.B2E21_LEFL:LOSS_RS12
BLMEI.11L5.B2E21_MBA:LOSS_RS12
BLMEI.11L5.B2E24_MBA:LOSS_RS12
BLMEI.11L5.B2E44_MBA:LOSS_RS12
BLMEI.11L5.B2E44_MBA:LOSS_RS14
BLMEI.11L5.B2E44_MBA:LOSS_RS14
BLMEI.11L5.B2E44_MBA:LOS

Left-Right Asymmetry: Bump 11R5 has -2.6mm amplitude for similar loss pattern

Left-Right Asymmetry in IP5

Comparison of approximated BLM signals in 2011 and 2015

The asymmetry seems to have been there already in 2011 → displaced beam-pipe?

IP2

IP 2 bumps

Correctors used for bumps

8_10_12

ACBCH8.R2B1, ACBCH10.R2B1, ACBH12.R2B1 ACBCH8.L2B2, ACBCH10.L2B2, ACBH12.L2B2

IP2 : Spreading losses over 2 cells

IP2 : Spreading losses over 2 cells

Bump Correctors: **8-10-12** Bump Amplitude: **-3mm**

The left bump is not large enough to move losses to cell 12.

Initial loss location 10R2 was partially moved to 12R2.

IP8

BFPP Losses around IP8

No BFPP Bumps

Small loss peaks appear as well around IP8 in similar locations as in IP2.

Conclusion

- BFPP bumps are efficient on both sides of IP1, right of IP5 and right of IP2.
- With the currently validated maximum amplitude, the loss location lies still inside MB.11L5.
 - An amplitude of -5mm (currently -3mm) is necessary to move the losses into the empty cryostat left of IP5.
 - This left-right asymmetry is as well observed in the 2011 data.
- Losses to the right side of IP1/5 are already well predicted by simulations.
- Impact positions on left side seem to be systematically different than calculated.

THANK YOU FOR YOUR ATTENTION

Backup

Particle Losses around the Ring

Data from 2011

BLM Losses close to the IP5

BLM signals during van der Meer (VdM) Scans in IP5 in 2011

