

Università degli Studi di Milano

Precision SM physics at the LHC QCDxEW effects on MW

Alessandro Vicini University of Milano, INFN Milano

SAHA Theory workshop, February 23-27 2016

The topics under discussion

- MW determination at hadron colliders: observables and techniques
- different classes of radiative corrections, theoretical uncertainties \rightarrow impact on MW
 - final state QED corrections
 - EW and mixed QCDxEW corrections
 - PDF uncertainties

MW determination at hadron colliders: observables and techniques

•MW extracted from study of the

lepton-pair transverse mass, lepton transverse momentum, missing transverse momentum distributions thanks to the jacobian peak that enhances the sensitivity to MW

- •MW is extracted with a template fit technique: the best available theoretical model (MC event generator including radiative corrections + detector simulation) is used to prepare templates (i.e. distributions) each with a different MW value; the template that best fits the data selects the corresponding MW value as the preferred MW
- •The accuracy of the templates (missing higher order, PDF uncertainties, etc) is a source of theoretical systematic error on MW

•Challenging measurement:

a distortion at the few per mil level of the distributions yields a shift of O(10 MeV) of the MW value

•Transverse mass: important detector smearing effects, moderate impact from the ptW modeling Lepton pt: moderate detector effects, extremely sensitive to the ptW modeling

Available simulation tools

 analytic resummation of log(ptV/MV) with NNLL accuracy: with NNLO-QCD + NNLL accuracy

ResBos arXiv:hep-ph/9704258 DYRes arXiv:1507.06937

• QED FSR multiple photon description: Photos Comput.Phys.Commun. 79 (1994) 291-308 HORACE 1.0 hep-ph/0303102, hep-ph/0502218 PYTHIA QED arXiv:0710.3820 • NLO-EW corrections : WZGRAD hep-ph/9807417, hep-ph/0108274 **RADY** hep-ph/0109062, arXiv:0911.2322 **SANC** arXiv:hep-ph/0506110, arXiv:0711.0625 • event generator with NLO-EW + QED-PS: HORACE 3.1 hep-ph/0609170, arXiv:0710.1722 • event generator with NLO-QCD + QCD-PS: POWHEG arXiv:0805.4802 • event generator with NLO-(QCD+EW) + (QCD+QED)-PS: POWHEG arXiv:1201.4804, arXiv:1202.0465, arXiv:1302.4606 • event generator with NNLO-QCD + QCD-PS accuracy: DYNNLOPS arXiv:1407.2940 SHERPA@NNLO with UN²LOPS arXiv:1405.3607

The template-fit procedure applied to theoretical predictions

 the template fit allows to compare two theoretical models: one takes the role of the data and is used to generate one histogram (called pseudodata) with a fixed hypothesis for MW₀ the other is used to generate several histograms (called templates) for different MW_i values

- examples of "models": simulations using different PDF sets or including different sets of rad.corr.
- the comparison of the pseudodata with the different templates selects a preferred MŴ value
- the difference $M\hat{W}$ MW_0 is an estimate of the difference that we would obtain if we would fit the real data once with model I and then with model 2
- this approach is used to classify the role of radiative corrections in the MW measurement
 e.g. if you do not include a given set of corrections, the result of the fit will be shifted by XXX MeV
- → the absence in the MW fit of available corrections must be quoted as a theoretical systematic error; residual unknown effects induce an additional component of the theoretical component of the error

The template-fitting procedure: PDF example

• the template fitting procedure

measures the relative distance between NNPDF2.3 replica 0 and all the other sets/replicas it is an estimate of the difference that we would find if we would fit the real data with different PDFs Alessandro Vicini - University of Milano

Final state QED corrections

• Photos vs Horace

differences on MW at 2 MeV level

Photos vs PYTHIA QED-PS

 \rightarrow differences at small relative pt

• template fit based on HORACE LO templates (no detector simulation), bare leptons

0.05		Templates accuracy: LO		M_W shift	fts (MeV))
0.03		0.04	W^+ -	$\rightarrow \mu^+ \nu$	$ W^+ -$	$\rightarrow e^+ \nu$
0.01 0.5 -4 -3	ار بر معرف المعرف الم	Pseudodata accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
0.06	1	HORACE ONLY FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104 ± 1	-204 ± 1	-230 ± 2
0.05	2	HORACE: France Street - LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1
0.03	3	HORACE NLO-EW with QED shower	$-90{\pm}1$	-94 ± 1	-177 ± 1	-190 ± 2
0.01	4	$H \overset{\circ}{O} RACE FSR-LL + Pairs$	-94 ± 1	-102 ± 1	-182 ± 2	-199 ± 1
·	5 ² og ₁₀ (E _y)	PHOTOS FSR-LL	-92 ± 1	-100 ± 2	-182±1	-199 ± 2

- shifts of O(100 MeV) for muons and of O(200 MeV) for bare electrons; similar shifts for MT and ptl
 multiple photon radiation reduce the impact of the first photon emission
- the effect of weak and subleading QED terms, in HORACE matched, at the few MeV level
- the emission of additional pairs yields a shift of O(3-5 MeV) with the same sign of the first photon

the shift depends on the emitting lepton

Alessandro Vicini - University of Milano

SAHA, February 2016

Combining QCD and QED-FSR (I)

 the transverse mass does not receive large QCD corrections (the log(ptV/mV) terms cancel) the lepton pt instead requires the resummation to all orders of log(ptV/mV) enhanced terms (lepton pt stems from W decay but also from the W recoil against QCD radiation, coll.div.)

- we call "production model" the purely QCD description adopted as lowest order approximation to simulate all the relevant observables (at the Tevatron the choice was on ResBos); the templates used in the analysis are based on this model (the shifts are expressed in this unit) the following results are based on POWHEG NLO-QCD + QCD-PS (Pythia 8.1)
- \rightarrow are QED-FSR effects preserved after the convolution with QCD radiation?
 - \rightarrow how large are the mixed O($\alpha \alpha_s$) QCDxQED effects induced by the convolution?
 - → how sensitive are mixed corrections to the exact description of the kinematics of the process?

Combining QCD and QED-FSR (I)

 comparison of the impact of QED FSR in presence of two different "production models": LO vs NLO-(QCD) + (QCD)-PS

/II\ Combining QCD and QED-FSR tion

(II) CCMMNPV, in prepara

	Templates accuracy: LO		M_W shit	fts (MeV))
		W^+ ·	$\rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ \nu$	
	Pseudodata accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1	HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104±1	-204±1	-230±2
2	HORACE FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2
4	HORACEFSR-LL + Pairs	-94±1	-102 ± 1	-182±2	-199 ± 1
5	Рнотоs FSR-LL	-92±1	-100 ± 2	-182±1	-199 ± 2

	Templates: NLO-QCD+QCD	PS	M_W shifts (MeV)							
			$W^+ \to \mu^+ \nu$		$W^+ \rightarrow e^+ \nu$		$ W^+ \rightarrow e^+ \nu (dres)$			
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	M_T	p_T^ℓ		
1	$NLO-QCD+(QCD+QED)_{PS}$	Рутніа	$-95.4{\pm}0.6$	-399 ± 2	-164.1 ± 0.6	-727±3	-37.8 ± 0.6	-149 ± 3		
2	$NLO-QCD+(QCD+QED)_{PS}$	Photos	$-87.8 {\pm} 0.6$	-368 ± 2	-162.5 ± 0.6	-685 ± 2	-38.2 ± 0.6	-153 ± 2		
3	$NLO-(QCD+EW)+(QCD+QED)_{PS}$	Pythia	-102.0 ± 0.6	-426 ± 2	-171.5 ± 0.8	-760 ± 3	-44.8 ± 0.6	-182 ± 2		
4	$NLO-(QCD+EW)+(QCD+QED)_{PS}$	Photos	-94.4 ± 0.6	-391 ± 3	-170.5 ± 0.6	-715 ± 3	-45.6 ± 0.4	-181 ± 2		

• comparison between Photos on top of the pure LO vs Photos on top of the QCD production model

Combining QCD and QED-FSR (II) CCMMNPV, in preparation

Templates accuracy: LO M_W shifts (MeV) $W^+ \rightarrow e^+ \nu$ $W^+ \rightarrow \mu^+ \nu$ Pseudodata accuracy p_T^ℓ M_T p_T^ℓ M_T 1 HORACE only FSR-LL at $\mathcal{O}(\alpha)$ -204 ± 1 -104 ± 1 -230 ± 2 -94 ± 1 HORACE FSR-LL -97 ± 1 -179 ± 1 -195 ± 1 -89 ± 1 2HORACE NLO-EW with QED shower -90 ± 1 -94 ± 1 -177±1 -190 ± 2 3 HORACE FSR-LL + Pairs -102 ± 1 -182±2 -199 ± 1 -94 ± 1 Рнотоs FSR-LL -92 ± 1 -100±2 -182±1 -199 ± 2

	Templates: NLO-QCD+QCD	M_W shifts (MeV)							
			$W^+ \rightarrow \mu^+ \nu$ $W^+ \rightarrow e^+ \nu$			$W^+ \to e^+ \nu (dres)$			
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	M_T	p_T^ℓ	
1	$NLO-QCD+(QCD+QED)_{PS}$	Рутніа	$-95.4{\pm}0.6$	-399 ± 2	-164.1 ± 0.6	-727±3	-37.8 ± 0.6	-149 ± 3	
2	$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	$-87.8 {\pm} 0.6$	-368 ± 2	-162.5 ± 0.6	-685 ± 2	-38.2 ± 0.6	-153 ± 2	
3	$NLO-(QCD+EW)+(QCD+QED)_{PS}$	Pythia	-102.0 ± 0.6	-426 ± 2	-171.5 ± 0.8	-760 ± 3	-44.8 ± 0.6	-182 ± 2	
4	$\rm NLO-(QCD+EW)+(QCD+QED)_{PS}$	Рнотоз	-94.4 ± 0.6	-391 ± 3	-170.5 ± 0.6	-715 ± 3	-45.6 ± 0.4	-181 ± 2	

- comparison between Photos on top of the pure LO vs Photos on top of the QCD production model
- transverse mass: the order of magnitude of the shifts is preserved by QCD radiation

Combining QCD and QED-FSR (II) CCMMNPV, in preparation

	Templates accuracy: LO		M_W shift	fts (MeV))
		$ W^+ -$	$\rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ \nu$	
	Pseudodata accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1	HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104±1	-204±1	-230±2
2	HORACE FSR-LL	$-89{\pm}1$	-97 ± 1	-179 ± 1	-195 ± 1
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2
4	HORACEFSR-LL + Pairs	-94±1	-102±1	-182±2	-199±1
5	Рнотоs FSR-LL	-92±1	-100 ± 2	-182 ± 1	-199 ± 2

	Templates: NLO-QCD+QCD	M_W shifts (MeV)							
				$W^+ \rightarrow \mu^+ \nu$		$W^+ \rightarrow e^+ \nu$		$\nu(\text{dres})$	
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	M_T	p_T^ℓ	
1	$NLO-QCD+(QCD+QED)_{PS}$	Pythia	$-95.4{\pm}0.6$	-399 ± 2	-164.1±0.6	-727±3	-37.8 ± 0.6	-149±3	
2	$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	-87.8 ± 0.6	-368 ± 2	-162.5 ± 0.6	-685 ± 2	-38.2 ± 0.6	-153 ± 2	
3	$NLO-(QCD+EW)+(QCD+QED)_{PS}$	Pythia	-102.0 ± 0.6	-426 ± 2	-171.5 ± 0.8	-760 ± 3	-44.8 ± 0.6	-182 ± 2	
4	$NLO-(QCD+EW)+(QCD+QED)_{PS}$	Photos	-94.4 ± 0.6	-391 ± 3	-170.5 ± 0.6	-715 ± 3	-45.6 ± 0.4	-181 ± 2	

• comparison between Photos on top of the pure LO vs Photos on top of the QCD production model

- transverse mass: the order of magnitude of the shifts is preserved by QCD radiation
- lepton pt: sensible increase of the overall shift

(broader shape of the distribution due to very large QCD corrections $O(\alpha \alpha_s^n)$

 \rightarrow enhancement of the QED effects, sensitivity to QCD details)

a large fraction of these effects already part of the current analyses

(ResBos x Photos, POWHEG x Photos)

Combining QCD and QED-FSR (II) CCMMNPV, in preparation

	Templates accuracy: LO		M_W shift	fts (MeV))
		$W^+ \rightarrow \mu^+ \nu$		$ W^+ -$	$\rightarrow e^+ \nu$
	Pseudodata accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1	HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104±1	-204±1	-230±2
2	HORACE FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2
4	HORACEFSR-LL + Pairs	-94 ± 1	-102 ± 1	-182±2	-199 ± 1
5	Рнотоs FSR-LL	-92 ± 1	-100 ± 2	-182±1	-199 ± 2

	Templates: NLO-QCD+QCD	PS	M_W shifts (MeV)							
		$W^+ \rightarrow$	$\mu^+ \nu$	$W^+ \rightarrow e^+ \nu$		$W^+ \to e^+ \nu (dres)$				
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	M_T	p_T^ℓ		
1	$NLO-QCD+(QCD+QED)_{PS}$	Рутніа	$-95.4{\pm}0.6$	-399 ± 2	-164.1 ± 0.6	-727±3	-37.8 ± 0.6	-149±3		
2	$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	$-87.8 {\pm} 0.6$	-368 ± 2	-162.5 ± 0.6	-685 ± 2	-38.2 ± 0.6	-153±2		
3	$NLO-(QCD+EW)+(QCD+QED)_{PS}$	Pythia	-102.0 ± 0.6	-426 ± 2	-171.5 ± 0.8	-760 ± 3	-44.8 ± 0.6	-182 ± 2		
4	$NLO-(QCD+EW)+(QCD+QED)_{PS}$	Photos	-94.4 ± 0.6	-391 ± 3	-170.5 ± 0.6	-715 ± 3	-45.6 ± 0.4	-181 ± 2		

• comparison between Photos on top of the pure LO vs Photos on top of the QCD production model

- transverse mass: the order of magnitude of the shifts is preserved by QCD radiation
- lepton pt: sensible increase of the overall shift

(broader shape of the distribution due to very large QCD corrections $O(\alpha \alpha_s^n)$

 \rightarrow enhancement of the QED effects, sensitivity to QCD details)

a large fraction of these effects already part of the current analyses

(ResBos x Photos, POWHEG x Photos)

• the different QED modeling by Photos vs Pythia (at low emission angles / relative pt) is evident with bare leptons and disappears with dressed electrons

Classification of mixed $O(\alpha \alpha_s)$ QCDxEW corrections

• The bulk of the $O(\alpha \alpha_s)$ corrections relevant for the MW determination, i.e. QCDxQED, can be obtained with a combination of QCD-ISR and QED-FSR codes

• The full set of $O(\alpha \alpha_s)$ corrections (challenging 2-loop calculation) is not yet available

• The bulk of the $O(\alpha \alpha_s)$ corrections relevant for the MW determination, i.e. QCD_xQED , can be obtained with a combination of QCD-ISR and QED-FSR codes

• The full set of $O(\alpha \alpha_s)$ corrections (challenging 2-loop calculation) is not yet available

- POWHEG NLO-(QCD+EW)
 - · it has NLO-(QCD+EW) accuracy on the total cross section
 - · it describes with exact matrix elements the hardest parton (gluon, quark, photon) emission
 - · it includes to all orders QCD and QED effects via Parton Shower

$$d\sigma = \sum_{f_b} \bar{B}^{f_b}(\boldsymbol{\Phi}_n) d\boldsymbol{\Phi}_n \left\{ \Delta^{f_b}(\boldsymbol{\Phi}_n, p_T^{min}) + \sum_{\alpha_r \in \{\alpha_r | f_b\}} \frac{\left[d\Phi_{rad} \,\theta(k_T - p_T^{min}) \,\Delta^{f_b}(\boldsymbol{\Phi}_n, k_T) \,R(\boldsymbol{\Phi}_{n+1}) \right]_{\alpha_r}^{\bar{\boldsymbol{\Phi}}_n^{\alpha_r} = \boldsymbol{\Phi}_n}}{B^{f_b}(\boldsymbol{\Phi}_n)} \right\}$$

non-trivial interplay between NLO-EW corrections and QCD radiation factors

 → a new subset of factorizable O(αα_s) subleading corrections is available
 (missing in the Tevatron analysis)

Combining QCD and EW corrections

 comparison of the impact of full EW corrections as implemented in POWHEG NLO-(QCD+EW) + (QCD+QED)-PS with respect to POWHEG NLO-(QCD) + (QCD+QED)-PS

Results (preliminary) for the Tevatron (generator level)

Τe	emplates: NLO QC		M_W shifts (MeV)							
	Pseudodata: $(+QCD_{PS})$		$ W^+$ -	$W^+ \rightarrow \mu^+ \nu$		$W^+ \to e^+ \nu$		$e^+\nu(\text{dres})$		
	ME accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	M_T	p_T^ℓ		
1	NLO QCD	Pythia	-90 ± 2	-310±4	-155 ± 1	-543 ± 4	-37 ± 1	-116±3		
2	NLO QCD	Рнотоз	-83 ± 2	-281 ± 3	-166 ± 1	-563 ± 4	-37 ± 1	-117 ± 3		
3	NLO QCD+EW	Pythia	$-96{\pm}1$	-318 ± 4	-159 ± 2	-558 ± 3	-42 ± 1	-128 ± 4		
4	NLO QCD+EW	Рнотоз	-89 ± 1	-295 ± 3	-171 ± 1	-576 ± 3	-42 ± 1	-129 ± 3		

• NLO-QCD vs NLO-(QCD+EW) POWHEG always with QCD-PS

always with PHOTOS as QED final state shower

the shift is due to the presence of

 \cdot exact EW O(α)

· mixed QCDxEW $O(\alpha \alpha_s)$ effects

these effects are not accounted for in the approximation 2), i.e. in QCDx(QED-FSR)

- the effects are almost independent of the lepton flavor (mass) or of the bare/dressed definition larger for the ptl results
- effects not accounted for in the Tevatron analyses (ResBos x PHOTOS) nor in a combination (POWHEG-QCD x PHOTOS)
 - ⇒ assessment of the uncertainty of the current Tevatron analyses (still generator level)

Results (preliminary) for the LHC (generator level)

Τe	emplates: NLO QO	$CD+QCD_{PS}$	M_W shifts (MeV)							
Pseudodata: $(+QCD_{PS})$		$W^+ \rightarrow$	$W^+ \to \mu^+ \nu$		$e^+\nu$	$ W^+ \rightarrow e^+ \nu (dres)$				
	ME accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	M_T	p_T^ℓ		
1	NLO QCD	Pythia	$-95.4{\pm}0.6$	-399 ± 2	-164.1 ± 0.6	-727±3	-37.8 ± 0.6	-149 ± 3		
2	NLO QCD	Рнотоз	-87.8 ± 0.6	-368 ± 2	-162.5 ± 0.6	-685 ± 2	-38.2 ± 0.6	-153 ± 2		
3	NLO QCD+EW	Pythia	-102.0 ± 0.6	-426 ± 2	-171.5 ± 0.8	-760 ± 3	-44.8 ± 0.6	-182 ± 2		
4	NLO QCD+EW	Рнотоз	-94.4 ± 0.6	-391±3	-170.5 ± 0.6	-715 ± 3	-45.6 ± 0.4	-181 ± 2		

Results (preliminary) for the LHC (generator level)

Te	emplates: NLO QO	$CD+QCD_{PS}$		M_W shifts (MeV)							
Pseudodata: $(+QCD_{PS})$		$W^+ \to \mu^+ \nu$		$W^+ \to e^+ \nu$		$ W^+ \rightarrow e^+ \nu (dres)$					
	ME accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	M_T	p_T^ℓ			
1	NLO QCD	Pythia	-95.4 ± 0.6	-399 ± 2	-164.1 ± 0.6	-727±3	-37.8 ± 0.6	-149±3			
2	NLO QCD	Рнотоз	-87.8 ± 0.6	-368 ± 2	-162.5 ± 0.6	-685 ± 2	-38.2 ± 0.6	-153 ± 2			
3	NLO QCD+EW	Pythia	-102.0 ± 0.6	-426 ± 2	-171.5 ± 0.8	-760 ± 3	-44.8 ± 0.6	-182 ± 2			
4	NLO QCD+EW	Photos	-94.4 ± 0.6	-391 ± 3	-170.5 ± 0.6	-715 ± 3	-45.6 ± 0.4	-181 ± 2			

Results (preliminary) for the LHC (detector level: simulation with DELFES)

	Templates: NLO Q	$QCD+QCD_{PS}$		M_W shift	ts (MeV)	
	Pseudodata: (-	$+QCD_{PS})$	$W^{+} -$	$\rightarrow \mu^+ \nu$	W^{+} –	$\rightarrow e^+ \nu$
	ME accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ
1	NLO QCD	Рнотоз	-114±3	-199 ± 5	-333±2	-571±4
2	NLO QCD+EW	Photos	-129 ± 2	-224 ± 4	-347 ± 2	-595 ± 4

 transverse mass: distortion of the reference shape (POWHEG QCD x Photos) estimate of the additional QCDxEW effects amplified by a factor of O(2)

 lepton pt: distortion of the reference shape (POWHEG QCD x Photos) moderate change of the size of the additional QCDxEW effects

Approximations of $O(\alpha \alpha_s)$ corrections

- evaluation of the $O(\alpha \alpha_s)$ corrections at the W resonance (pole approximation) Dittmaier, Huss, Schwinn, arXiv:1403.3216, arXiv:1405.6897
- non-factorizable corrections are estimated to be phenomenologically negligible for a measurement at the resonance (e.g.W mass)
- the factorizable corrections are computed in pole approximation and compared with the product of 1-loop correction factors
 - \rightarrow the "naive" I-loop approximation reproduces the pole approximation for the transverse mass deviates in the lepton pt case

Approximations of $O(\alpha \alpha_s)$ corrections

- evaluation of the $O(\alpha \alpha_s)$ corrections at the W resonance (pole approximation) Dittmaier, Huss, Schwinn, arXiv:1403.3216, arXiv:1405.6897
- non-factorizable corrections are estimated to be phenomenologically negligible for a measurement at the resonance (e.g.W mass)
- the factorizable corrections are computed in pole approximation and

compared with the product of I-loop correction factors

 \rightarrow the "naive" I-loop approximation reproduces the pole approximation for the transverse mass

m_T fit uncertainties				
Source	$W ightarrow \mu u$	$W \rightarrow e v$	Common	
Lepton energy scale	7	10	5	
Lepton energy resolution	1	4	0	
Lepton efficiency	0	0	0	
Lepton tower removal	2	3	2	
Recoil scale	5	5	5	
Recoil resolution	7	7	7	
Backgrounds	3	4	0	
PDFs	10	10	10	
W boson p_T	3	3	3	
Photon radiation	4	4	4	
Statistical	16	19	0	
Total	23	26	15	

p_T^ℓ fit uncertainties				
Source	$W ightarrow \mu u$	$W \rightarrow ev$	Common	
Lepton energy scale	7	10	5	
Lepton energy resolution	1	4	0	
Lepton efficiency	1	2	0	
Lepton tower removal	0	0	0	
Recoil scale	6	6	6	
Recoil resolution	5	5	5	
Backgrounds	5	3	0	
PDFs	9	9	9	
W boson p_T	9	9	9	
Photon radiation	4	4	4	
Statistical	18	21	0	
Total	25	28	16	

PDF uncertainty affecting MW extracted from the ptlep distribution

G.Bozzi, L.Citelli, AV, arXiv:1501.05587

Conservative estimate of the PDF uncertainty, obtained from the CC-DY channel alone,

using a template fit approach:

distributions obtained with POWHEG+PYTHIA 6.4, different PDF replicas are treated as pseudodata

• The PDF uncertainty over the relevant ptl range is almost flat, of $O(2\%)^{p_{\perp}^{l}(\text{GeV})}$ the normalized distributions have an uncertainty below the O(0.5%) level, still sufficient to yield large MW shifts

• Given a reference PDF set (NNPDF2.3 replica 0) we estimate which would be the difference in the fit of the data if we would use a different PDF replica in the preparation of the templates

We combine the resulting MW values according to the prescriptions of the different groups Hessian $\sigma_X^2 = \frac{1}{4} \sum_{k=1}^{N} [X(S_k^+) - X(S_k^-)]^2$ MonteCarlo (NNPDF) $\sigma_X^2 = \frac{1}{N_{rep} - 1} \sum_{i}^{N_{rep}} [X^i - X]^2$

Alessandro Vicini - University of Milano

Milano, February 11th 2015

Shape of the ptlep distribution as a function of a cut on PTW

• The steeper the distribution, the stronger the sensitivity to MW large shifts are disfavored \rightarrow the uncertainty is reduced

PDF uncertainty affecting MW extracted from the ptlep distribution

G.Bozzi, L.Citelli, AV, arXiv:1501.05587

• Contrary to the transverse mass case, we do not expect large detector effects on these results

 Modern individual PDF sets provide not-pessimistic estimates , ΔMW ~ O(10 MeV), but the global envelope still shows large discrepancies of the central values

• The Tevatron analyses did not adopt the PDF4LHC approach Alessandro Vicini - University of Milano

SAHA, February 2016

PDF uncertainty affecting MW and acceptance cuts

G.Bozzi, L.Citelli, AV, arXiv:1501.05587

The dependence of the MW PDF uncertainty on the acceptance cuts provides interesting insights

normalized distributions				
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0	
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014	
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012	
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009	
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007	
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017	
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009	
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003	
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012	

PDF uncertainty affecting MW and acceptance cuts

G.Bozzi, L.Citelli, AV, arXiv:1501.05587

The dependence of the MW PDF uncertainty on the acceptance cuts provides interesting insights

normalized distributions				
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0	
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014	
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012	
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009	
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007	
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017 g	
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009	
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003	
$p^W_\perp < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012	

- cut on the lepton pseudorapidity
 - the normalized ptlep distribution, integrated over the whole lepton-pair rapidity range, does not depend on x and depends very weakly on the PDF replica

Alessandro Vicini - University of Milano

Attempts to reduce the PDF uncertainties on MW

are PDFs a bottleneck for MW? can we improve over the present status? 3 complementary answers:

I) more inputs to the PDF fit (e.g. NNPDF2.3 vs NNPDF3.0)

- 2) use of the ptZ info (ratios W/Z) in order to account for the correlations between CC and NC more in general look for observables sensitive to MW and/or to the uncertainty source
- 3) exploit different kinematical regions of the CC-DY process

G.Bozzi, L.Citelli, AV, arXiv: 1501.05587 S.Quackenbush, Z.Sullivan, arXiv: 1502.04671 A.Bodek, J.Y.Han, A.Khukhunaishvili, W.Sakumoto, arXiv: 1507.04965, arXiv: 1507.02470 G.Bozzi, L.Citelli, M.Vesterinen, AV, arXiv: 1508.06954 Impact of a LHCb MW measurement in the combination with ATLAS/CMS results G.Bozzi, L.Citelli, M.Vesterinen, AV, arXiv:1508.06954

- using the standard acceptance cuts for ATLAS/CMS (called G) and for LHCb (called L) and both W charges we study the MW determination from the lepton pt distribution assuming that a LHCb measurement becomes available
 - · PDF uncertainty on MW according to PDF4LHC (NNPDF3.0, MMHT2014)
 - correlation matrix ρ w.r.t. PDF variation of the replicas of the NNPDF3.0 set

 \rightarrow non negligible anticorrelation

• the linear combination that minimizes the final uncertainty on MW is given by the coefficients α

$$m_W = \sum_{i=1}^{4} \alpha_i m_{W \ i} \qquad \alpha = \begin{pmatrix} \mathbf{G} + 0.30 \\ \mathbf{G} - 0.45 \\ \mathbf{L} + 0.21 \\ \mathbf{L} - 0.04 \end{pmatrix}$$

- the exercise is robust under conservative assumptions for the LHCb main systematic uncertainties and guarantees a reduction by 30% of the PDF uncertainty estimated for ATLAS/CMS alone
- potential serious bottleneck for a measurement based on ptl: ptW modeling in the LHCb acceptance

 $\delta_{\rm PDF} = \begin{pmatrix} \mathbf{G}^+ & 24.8 \\ \mathbf{G}^- & 13.2 \\ \mathbf{L}^+ & 27.0 \\ \mathbf{L}^- & 49.3 \end{pmatrix}$ et

$$\rho = \begin{pmatrix} \mathbf{G}^{+} & \mathbf{G}^{-} & \mathbf{L}^{+} & \mathbf{L} \\ \mathbf{G}^{+} & 1 & & \\ \mathbf{G}^{-} & -0.22 & 1 & \\ \mathbf{L}^{+} & -0.63 & 0.11 & 1 \\ \mathbf{L}^{-} & -0.02 & -0.30 & 0.21 & 1 \end{pmatrix}$$

Conclusions

• preliminary results for the

quantitative assessment of the effect on MW of QED and mixed QCDxEW radiative corrections based on the comparison of distributions generated with Horace, Photos, POWHEG NLO-QCD and POWHEG NLO-(QCD+EW)

non negligible contribution (in a 10 MeV perspective) of additional lepton pairs and of mixed QCDxEW terms; these effects should be included in the analysis (or accounted for in the th. systematic error)

- the combination of QCD and EW corrections still suffers of (matching) ambiguities that only explicit analytical results at $O(\alpha \alpha_s)$ may fix
- important progresses in the development of pQCD simulation tools what is the correct strategy to estimate the QCD error MW? how can we discuss the interplay between perturbative and non-perturbative effects W, Z and other observables?

(i.e. the transfer of information from other processes to CC-DY and the estimate of the associated error)

- a global analysis with the simultaneous variation of all the different non-pert QCD factors may be the correct approach to achieve a realistic estimate of the corresponding errors
- the MW measurement is a very complex problem and a training ground of our tools and techniques that could be applied to other precision observables at the LHC in the future a precise determination of MW might help us to recognize BSM signals or provide an additional validation of the Standard Model