Precision Physics at the LHC

V. Ravindran

Institute of Mathematical Sciences, Chennai

- Experiment and Theory
- QCD improved parton model
- Strong coupling constant
- Parton distribution function
- NLO, NNLO results
- Jet physics

Multi-leg, Multi-loop Processes at SINP, Kolkata 23-27 Feb 2016

Aspects of QCD at the LHC

- Experiment and Theory
- QCD improved parton model
- Strong coupling constant
- Parton distribution function
- NLO, NNLO results
- Jet physics

- Excellent discovery reach:
 - Higgs
 - Supersymmery
 - Extra-Dimensional models
 - Anything else

- Excellent discovery reach:
 - Higgs

 - SupersymmetryExtra-Dimensional models
 - Anything else
- Enormous amount of events (with $10fb^{-1}$ /year)
 - $\circ W
 ightarrow e
 u$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $t\bar{t}$ production: 10⁷ events
 - Higgs ($m_H = 700 GeV$): 10⁴ events

- Excellent discovery reach:
 - Higgs
 - Supersymmery
 - Extra-Dimensional models
 - Anything else
- Enormous amount of events (with $10fb^{-1}$ /year)
 - $\circ~W
 ightarrow e
 u$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $\circ t\overline{t}$ production: 10⁷ events
 - Higgs ($m_H = 700 GeV$): 10⁴ events
- Large background
 - Large number of $\gamma, l^{\pm}, Z, W^{\pm}$
 - Jets
 - Large number of $t\overline{t}, b\overline{b}$

- Excellent discovery reach:
 - Higgs
 - Supersymmery
 - Extra-Dimensional models
 - Anything else
- Enormous amount of events (with $10fb^{-1}$ /year)
 - $\circ W
 ightarrow e
 u$: 10^8 events
 - $\circ Z \rightarrow e^+e^-$: 10⁷ events
 - $t\overline{t}$ production: 10⁷ events
 - Higgs ($m_H = 700 GeV$): 10^4 events
- Large background
 - $\circ~$ Large number of $\gamma, l^{\pm}, Z, W^{\pm}$
 - Jets
 - Large number of $t\overline{t}, b\overline{b}$
- Theories:
 - Quantum Chromodynamics (QCD) effects
 - Electroweak (WE) effects

- Excellent discovery reach:
 - Higgs
 - Supersymmetry
 - Extra-Dimensional models
 - Anything else
- Enormous amount of events (with $10fb^{-1}$ /year)
 - $\circ~W
 ightarrow e
 u$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $t\overline{t}$ production: 10⁷ events
 - Higgs ($m_H = 700 GeV$): 10^4 events
- Large background
 - $\circ\;$ Large number of $\gamma, l^{\pm}, Z, W^{\pm}$
 - Jets
 - Large number of $t\overline{t}, b\overline{b}$
- Theories:
 - Quantum Chromodynamics (QCD) effects
 - Electroweak (WE) effects
- Issues to be tackled:
 - Kinematics
 - Normalisation
 - Renormalisation and factorisation scale uncertainities
 - Parton Distribution Functions
 - Phase Space boundary effects and resummation of large logs

What experimentalists see

What really happens

- Large number of events of different kinds involving variety of particles at the production and detector levels
- The underlying theory, Quantum Chromodynamics provides a physical picture.
- Exact computation of such an observable is unrealistic.

• LHC being hadronic machine Quantum Chromodynamics(QCD), - the theory of Strong interaction physics plays an important role.

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".
- Provides a framework to compute signal and background processes both in Standard Model and in beyond the Standard Model.

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".
- Provides a framework to compute signal and background processes both in Standard Model and in beyond the Standard Model.
- We can explore the validity of SM at very high energies
- We can compute New physics signal and large SM background very precisely

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".
- Provides a framework to compute signal and background processes both in Standard Model and in beyond the Standard Model.
- We can explore the validity of SM at very high energies
- We can compute New physics signal and large SM background very precisely
- Parameter of QCD is strong coupling constant g_s or Λ_{QCD} .

QCD-a toolkit for discovering NEW PHYSICS at LHC

$$d\sigma^{P_1P_2} = \sum_{ab} \int dx_1 \int dx_2 f_{rac{a}{P_1}}\left(x_1, \mu_F^2
ight) f_{rac{b}{P_2}}\left(x_2, \mu_F^2
ight) d\hat{\sigma}^{ab}\left(x_1, x_2, \{p_i\}, \mu_F^2
ight),$$

- $f_a(x, \mu_F^2)$ are parton distribution functions inside the hadron P.
- Non-perturbative in nature and process independent.

$$d\sigma^{P_1P_2} = \sum_{I} \int dx_1 \int dx_2 f_{rac{a}{P_1}}\left(x_1, \mu_F^2
ight) f_{rac{b}{P_2}}\left(x_2, \mu_F^2
ight) d\hat{\sigma}^{ab}\left(x_1, x_2, \{p_i\}, \mu_F^2
ight),$$

- $f_a(x, \mu_F^2)$ are parton distribution functions inside the hadron P.
- Non-perturbative in nature and process independent.
- $\hat{\sigma}_{ab}(x_i, \{p_i\}, \mu_F^2)$ are the partonic cross sections.
- Perturbatively calculable.

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) = \sum_{i=0}^{\infty} \left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i} d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) = \sum_{i=0}^{\infty} \left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i} d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

• The non-perturbative flux:

$$\Phi_{ab}(x,\mu_F) = \int_x^1 \frac{dz}{z} f_a(z,\mu_F) f_b\left(rac{x}{z},\mu_F
ight)$$

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(\tau, m_h^2\right) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}\left(x, \mu_F\right) 2\hat{s} \ d\hat{\sigma}^{ab}\left(\frac{\tau}{x}, m_h^2, \mu_F\right)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) = \sum_{i=0}^{\infty} \left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i} d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

• The non-perturbative flux:

$$\Phi_{ab}(x,\mu_F) = \int_x^1 rac{dz}{z} f_a(z,\mu_F) f_b\left(rac{x}{z},\mu_F
ight)$$

- $f_a^{P_1}(x, \mu_F)$ are Parton distribution functions with momentum fraction x.
- μ_R is the Renormalisation scale and μ_F , Factorisation scale

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) ~=~ \sum_{i=0}^{\infty}\left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i}d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

• The non-perturbative flux:

$$\Phi_{ab}(x, \mu_F) = \int_x^1 \frac{dz}{z} f_a(z, \mu_F) f_b\left(rac{x}{z}, \mu_F
ight)$$

- $f_a^{P_1}(x, \mu_F)$ are Parton distribution functions with momentum fraction x.
- μ_R is the Renormalisation scale and μ_F , Factorisation scale
- The Renormalisation group invariance:

$$rac{d}{d\mu}\sigma^{P_1P_2}(au,m_h^2)=0, \qquad \mu=\mu_F,\mu_R$$

Higgs Production through gluon fusion:

$$2S \, d\sigma^{PP}(x, m_H) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)}(z, \mu_F) \, 2\hat{s} \, d\hat{\sigma}_{gg}^{(0)}\left(\frac{x}{z}, m_H^2, \mu_R\right) + \cdots$$

Higgs Production through gluon fusion:

$$2S \, d\sigma^{PP} \left(x, m_H \right) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)} \left(z, \mu_F \right) 2\hat{s} \, d\hat{\sigma}_{gg}^{(0)} \left(\frac{x}{z}, m_H^2, \mu_R \right) + \cdots$$

Higgs Production through gluon fusion:

$$2S \, d\sigma^{PP}(x, m_H) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)}(z, \mu_F) \, 2\hat{s} \, d\hat{\sigma}_{gg}^{(0)}\left(\frac{x}{z}, m_H^2, \mu_R\right) + \cdots$$

Higgs Production through gluon fusion:

$$2S \ d\sigma^{PP}(x, m_H) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)}(z, \mu_F) \ 2\hat{s} \ d\hat{\sigma}_{gg}^{(0)}\left(\frac{x}{z}, m_H^2, \mu_R\right) + \cdots$$

$$00000000$$
• μ_R -renormalisation scale
• μ_F -factorisation scale
• μ_F -factorisation scale
• μ_R -renormalisation scale
• μ_F -factorisation scale

$$2\hat{s} \ \hat{\sigma}_{gg}^{(0)}(\hat{s},\mu_R) \sim \alpha_s^2(\mu_R) \ G_F \ \left[rac{4m_t^2}{m_H^2} F \left(rac{4m_t^2}{m_H^2}
ight)
ight], \qquad \qquad rac{m_H}{2} < \mu_R = \mu_F < 2m_H$$

LO prediction is Unreliable due 100 - 200% scale uncertainity

• Renormalisation scale due to UV divergences

$$\alpha_s \rightarrow \alpha_s(\mu_R)$$

• Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

• Factorisation scale due to light quarks and massless gluon

$$f_a(x) \to f_a(x, \mu_F)$$
 $a = q, \bar{q}, g$

• Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

• Factorisation scale due to light quarks and massless gluon

 $f_a(x) \to f_a(x, \mu_F)$ $a = q, \bar{q}, g$

Parton Distribution Functions PDF extracted from experiments

NLO: CTEQ, GRV NNLO: MRS, MRST, MSTW, JR, ABKM, HERAPDF, NNPDF

• Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

• Factorisation scale due to light quarks and massless gluon

 $f_a(x)
ightarrow f_a(x, \mu_F)$ $a = q, \bar{q}, g$

• Parton Distribution Functions PDF extracted from experiments

NLO:	CTEQ,	GRV					
NNLO:	MRS,	MRST,	MSTW,	JR,	ABKM,	HERAPDF,	NNPDF

• Stability of perturbative result and missing higher order contributions.

Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

Factorisation scale due to light quarks and massless gluon

 $f_a(x) o f_a(x, \mu_F)$ $a = q, \bar{q}, g$

• Parton Distribution Functions PDF extracted from experiments

NLO: CTEQ, GRV NNLO: MRS, MRST, MSTW, JR, ABKM, HERAPDF, NNPDF

- Stability of perturbative result and missing higher order contributions.
- Observables are "free" of μ_R and μ_F .

$$\mu rac{d}{d\mu} \sigma^{P_1P_2} = 0, \qquad \mu = \mu_F, \mu_R, PDF$$

Strong Coupling Constant

Renormalisation Group Equation α_s

Renormalisation group equation for α_s :

$$a_s(\mu_R^2) = rac{g_s^2(\mu_R^2)}{16\pi^2} = rac{lpha_s(\mu_R^2)}{4\pi}$$

Renormalisation Group Equation α_s

Renormalisation group equation for α_s :

$$a_{s}(\mu_{R}^{2}) = \frac{g_{s}^{2}(\mu_{R}^{2})}{16\pi^{2}} = \frac{\alpha_{s}(\mu_{R}^{2})}{4\pi}$$
$$\mu_{R}^{2} \frac{d}{d\mu_{R}^{2}} a_{s}(\mu_{R}^{2}) = \beta \left(a_{s}(\mu_{R}^{2})\right)$$
$$= -\beta_{0} a_{s}^{2}(\mu_{R}^{2}) - \beta_{1} a_{s}^{3}(\mu_{R}^{2}) - \beta_{2} a_{s}^{4}(\mu_{R}^{2}) - \cdots$$

Renormalisation Group Equation α_s

Renormalisation group equation for α_s :

$$a_{s}(\mu_{R}^{2}) = \frac{g_{s}^{2}(\mu_{R}^{2})}{16\pi^{2}} = \frac{\alpha_{s}(\mu_{R}^{2})}{4\pi}$$
$$\mu_{R}^{2} \frac{d}{d\mu_{R}^{2}} a_{s}(\mu_{R}^{2}) = \beta \left(a_{s}(\mu_{R}^{2})\right)$$
$$= -\beta_{0} a_{s}^{2}(\mu_{R}^{2}) - \beta_{1} a_{s}^{3}(\mu_{R}^{2}) - \beta_{2} a_{s}^{4}(\mu_{R}^{2}) - \cdots$$

Renormalisation Group Equation α_s

Renormalisation group equation for α_s :

$$a_{s}(\mu_{R}^{2}) = \frac{g_{s}^{2}(\mu_{R}^{2})}{16\pi^{2}} = \frac{\alpha_{s}(\mu_{R}^{2})}{4\pi}$$
$$\mu_{R}^{2}\frac{d}{d\mu_{R}^{2}}a_{s}(\mu_{R}^{2}) = \beta \left(a_{s}(\mu_{R}^{2})\right)$$
$$= -\beta_{0} a_{s}^{2}(\mu_{R}^{2}) - \beta_{1} a_{s}^{3}(\mu_{R}^{2}) - \beta_{2} a_{s}^{4}(\mu_{R}^{2}) - \cdots$$

Measured from :

- Tau decays,
- lattice,
- heavy quarkonia decays,
- non-single structure functions,
- Jets from HERA,
- event shape variables from LEP

0.5 March. 2012 τ-decays $\alpha_{s}(Q)$ 0 • τ decays (N³LO) ■ Lattice QCD (NNLO) Lattice △ DIS jets (NLO) 0.4 0 □ Heavy Quarkonia (NLO) • e⁺e⁻ jets & shapes (res. NNLO) DIS • e.w. precision fits (N³LO) 0 \square pp -> jets (NLO) 0.3 e+e-0 e.w. fits 0 0.2 0.13 0.11 0.12 0.1 $\alpha_{s}(M_{Z})$ $\alpha_{s}(M_{Z}) = 0.1185 \pm 0.0007$ $\equiv QCD$ 10 100 1 $\alpha_s(M_Z)$ Q [GeV] $\alpha_{\rm s}(M_{\rm Z^0})$ Process excl. mean $\alpha_{\rm s}(M_{\rm Z^0})$ std. dev. τ -decays 0.1197 ± 0.0016 0.1183 ± 0.0007 0.8Lattice QCD 0.1186 ± 0.0007 0.1182 ± 0.0011

0.3

1.5

0.3

0.2

 0.1188 ± 0.0010

 0.1185 ± 0.0006

 0.1185 ± 0.0006

DIS $[F_2]$

e⁺e⁻ [jets & shps]

ew. prec. data

 0.1151 ± 0.0022

 0.1172 ± 0.0037

 0.1192 ± 0.0028

S. Bethke

Parton Distribution Function

 $f_a(z, \mu_F)$

LHC-testing ground

J. Stirling

PDF and DGLAP evolution equation

Renormalised parton density:

$$f_a(z, oldsymbol{\mu_F}) = \Gamma_{ab}\left(z, oldsymbol{\mu_F}, rac{1}{arepsilon_{ ext{IR}}}
ight) \otimes \ f_a^B(z)$$

PDF and DGLAP evolution equation

Renormalised parton density:

$$f_a(z, oldsymbol{\mu_F}) = \Gamma_{ab}\left(z, oldsymbol{\mu_F}, rac{1}{arepsilon_{\mathrm{IR}}}
ight) \otimes \ f_a^{oldsymbol{B}}(z)$$

Dakshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Evolution equation:

$$\mu_F rac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 rac{dz}{z} P_{ab}(z,\mu_F) f_b\left(rac{x}{z},\mu_F
ight), \qquad P \equiv \Gamma^{-1}\left(\mu_F rac{d}{d\mu_F}
ight) \Gamma$$

PDF and DGLAP evolution equation

Renormalised parton density:

$$f_a(z, oldsymbol{\mu_F}) = \Gamma_{ab}\left(z, oldsymbol{\mu_F}, rac{1}{arepsilon_{\mathrm{IR}}}
ight) \otimes ~ f_a^{oldsymbol{B}}(z)$$

Dakshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Evolution equation:

$$\mu_F rac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 rac{dz}{z} P_{ab}(z,\mu_F) f_b\left(rac{x}{z},\mu_F
ight), \qquad P \equiv \Gamma^{-1}\left(\mu_F rac{d}{d\mu_F}
ight) \Gamma$$

Perturbatively Calculable:

$$P_{ab}(z,\mu_F) = \left(\frac{\alpha_s(\mu_F)}{4\pi}\right) P^{(0)}(z) \quad \text{one loop } (LO)$$
$$+ \left(\frac{\alpha_s(\mu_F)}{4\pi}\right)^2 P^{(1)}(z) \quad \text{two loop } (NLO)$$
$$+ \left(\frac{\alpha_s(\mu_F)}{4\pi}\right)^3 P^{(2)}(z) \quad \text{three loop } (NNLO)$$

NNLO is already known (summer 2004)

Scale Variation of Flux at the LHC

$$\Phi^{I}_{ab}(x,\mu_{F}) = \int_{x}^{1} \frac{dz}{z} f^{I}_{a}(z,\mu_{F}) f^{I}_{b}\left(\frac{x}{z},\mu_{F}\right) \qquad I = LO, NLO, NNLO$$

DGLAP evolution:

$$\mu_F \frac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 \frac{dz}{z} P_{ab}(z,\mu_F) f_b\left(\frac{x}{z},\mu_F\right) \qquad \mu_F = \mu, \quad \mu_0 = 150 \, GeV$$

Scale Variation of Flux at the LHC

$$\Phi_{ab}^{I}(x,\mu_{F}) = \int_{x}^{1} \frac{dz}{z} f_{a}^{I}(z,\mu_{F}) f_{b}^{I}\left(\frac{x}{z},\mu_{F}\right) \qquad I = LO, NLO, NNLO$$

$$\stackrel{\text{LHC(quark flux,Q=150 GeV)}{\overset{11}{\underset{0}{5}}}_{\overset{0}{\underset{0}{5}}}_$$

Scale Variation of Flux at the LHC

$$\Phi_{ab}^{I}(x,\mu_{F}) = \int_{x}^{1} \frac{dz}{z} f_{a}^{I}(z,\mu_{F}) f_{b}^{I}\left(\frac{x}{z},\mu_{F}\right) \qquad I = LO, NLO, NNLO$$

$$LHC(quark flux,Q=150 \text{ GeV}) \qquad LHC(gluon flux,Q=150 \text{ GeV})$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

$$(0)$$

0.8

DGLAP evolution:

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 μ/μ_0

 $(\eta)/\phi(\eta)$

 $= 150 \, GeV$

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 μ/μ_0

$$\mu_F rac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 rac{dz}{z} P_{ab}(z,\mu_F) f_b\left(rac{x}{z},\mu_F
ight) \qquad \mu_F = \mu, \quad \mu_0 =$$

PDF sets

Different Groups:

MSTW, CTEQ, ABKM, ABM, NNPD, HERAPDF, GJR,

PDF sets

Different Groups:

```
MSTW, CTEQ, ABKM, ABM, NNPD, HERAPDF, GJR, .....
```

Exterimental inputs:

Deep Inelastic Scattering, Drell-Yan, Tevatron jets, Tevatron W,Z , ...

PDF sets

Different Groups:

MSTW, CTEQ, ABKM, ABM, NNPD, HERAPDF, GJR,

Exterimental inputs:

Deep Inelastic Scattering, Drell-Yan, Tevatron jets, Tevatron W,Z , ...

PDF uncertainity:

Choice of data sets Treatment of heavy quarks Treatment of errors Order of perturbation theory Parametrisation of densities Flavour symmetries Asymptotic behavious of pdfs

Gluon Luminosity

- Data sets: Electroproduction, hadron production (fixed target and collider)
- Fits procedure: Hessian and Monte Carlo
- ullet Treatment: α_s , m_b and m_c

J. Stirling

NLO revolution

1979: NLO Drell-Yan [Altarelli, Ellis & Martinelli] 1991: NLO $gg \rightarrow$ Higgs [Dawson; Djouadi, Spira & Zerwas]

1987: NLO high-pt photoproduction [Aurenche et al]
1988: NLO bb, tt [Nason et al]
1988: NLO dijets [Aversa et al]
1993: Vj [JETRAD, Giele, Glover & Kosower]

1998: NLO $Wb\bar{b}$ [MCFM: Ellis & Veseli] 2000: NLO $Zb\bar{b}$ [MCFM: Campbell & Ellis] 2001: NLO 3j [NLOJet++: Nagy] ... 2007: NLO $t\bar{t}j$ [Dittmaier, Uwer & Weinzierl '07] ...

Advances at NLO

Analytical Methods

• Faster way of generating Feynman diagrams:

QGRAF

• Sympolic manupulation:

FORM, Mathematica

- On-shell methods
- Recursion techniques

Merging NLO with Parton Showers:

- MC@NLO
- POWEG
- SHERPA
- VINCIA
- GENeVa
- aMC@NLO
- KRKMC

Semi-numerical methods

- Helac-NLO
- CutTools
- BlackHat
- Rocket
- SAMURAI
- MadLoop
- GoSam
- Ngluon

NLO revolution


```
2009: NLO W+3j [Rocket: Ellis, Melnikov & Zanderighi]
```

```
2009: NLO W+3j [BlackHat+Sherpa: Berger et al]
```

```
2009: NLO t\bar{t}b\bar{b} [Bredenstein et al]
```

```
2009: NLO t\overline{t}b\overline{b} [HELAC-NLO: Bevilacqua et al]
```

```
2009: NLO q\bar{q} \rightarrow b\bar{b}b\bar{b} [Golem: Binoth et al]
```

```
2010: NLO tījj [HELAC-NLO: Bevilacqua et al]
```

```
2010: NLO Z+3j [BlackHat+Sherpa: Berger et al]
```

- - -

Role of NLO corrections

SMPR:

Madgraph, Pythia, Jetglu

W + n-jet cross section

Z background to SUSY searches

- Susy searches require estimate on the Z background
- Hard to measure Z background
- Photon rates are 6 times larger easy to measure.
- Use theory to get the ratio $R_{Z/\gamma}$

Z background to SUSY searches

- Susy searches require estimate on the Z background
- Hard to measure Z background
- Photon rates are 6 times larger easy to measure.
- Use theory to get the ratio $R_{Z/\gamma}$

measured

Background

$$\sigma(pp \to Z(\to \nu\bar{\nu}) + \text{jets}) = \sigma(pp \to \gamma + \text{jets}) \times R_{Z/\gamma} \qquad q \xrightarrow{Z \to \nu}_{q \to q} \qquad q \xrightarrow{Q \to \nu}_{q \to \mu} \qquad q \xrightarrow{Q \to \mu}$$

theory

Theory predictions

BlackHat

Virtual: On-shell and Unitarity cut techniques Real : SHERPA

CMS and ALTAS use this to estimate METZJ background for SUSY searches

Theory predictions

BlackHat

W+2 jet anomaly at CDF – NLO effect?

Higgs Results

QCD Processes for Higgs Production

An astasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger

Integration By Parts Identities

[Tkachov, Chetyrkin]

- \clubsuit Generalization of **Gauss's theorem** in d dimension.
- Within dimensional regularization, all integrals in d dimension are well-defined and convergent.

↓ the integrand must be zero at boundary (necessary condition for convergence)

\$ to make it free from Lorentz index

$$\int \prod_{i=1}^{l} \mathcal{D}^{d} k_{l} \frac{\partial}{\partial k_{j}^{\mu}} \left(\frac{v^{\mu}}{D_{1}^{n_{1}} \dots D_{m}^{n_{m}}} \right) = 0 \qquad \Big|_{v \equiv k_{i}, p_{i}}$$

Lorentz Invariance Identities

[Gehrmann, Remiddi]

Under Lorentz transformation of external momenta

$$p_i^\mu \to p_i^\mu + \delta p_i^\mu = p_i^\mu + \omega_\nu^\mu p_i^\nu$$
 with $\omega_\nu^\mu = -\omega_\mu^\nu$

the integrals are invariant i.e.

$$\mathcal{I}(p_i) = \mathcal{I}(p_i + \delta p_i) = \mathcal{I}(p_i) + \omega_{\mu}^{\nu} \sum_j p_j^{\mu} \frac{\partial}{\partial p_j^{\nu}} \mathcal{I}(p_i)$$

from which the identity can be derived

$$\sum_{j} \left(p_{j,\mu} \frac{\partial}{\partial p_{j}^{\nu}} - p_{j,\nu} \frac{\partial}{\partial p_{j}^{\mu}} \right) \mathcal{I}(p_{i}) = 0$$

Master Integrals Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger Methods **Integration By Parts** Real-virtual Double virtual Triple virtual squared real samminning agammanage $\int \frac{d^d k_1}{(2\pi)^d} \cdots \int \frac{d^d k_3}{(2\pi)^d} \frac{\partial}{\partial k_i} \cdot \left(v_j \frac{1}{\prod_l D_l^{n_l}} \right) = 0$ Double real Triple real Lorentz Invariance virtual $p_i^{\mu} p_j^{\nu} \left(\sum_{k} p_{k[\nu} \frac{\partial}{\partial p_k^{\mu]}} \right) J(\vec{n}) = 0.$ Integrals Master Integrals 100 000 diagrams

27

1028

NNLO

N3L0

50 000

517 531 178

Master Integrals

Higgs cross section at NNLO

N3LO QCD results for Higgs

N3LL resummed results for Higgs

Subtraction Methods at NNLO

Local subtraction schemes:

Radja Boughezal

- Sector decomposition (Anastasiou, Melnikov, Petriello, 2003)
 - $pp \rightarrow H, pp \rightarrow V$ including decays

(Anastasiou, Melnikov, Petriello, 2003-2004)

- Sector-improved subtraction schemes (Czakon, 2010; R.B., Melnikov, Petriello, 2
 - $pp \rightarrow t\bar{t}$ (Czakon, Fiedler, Mitov, 2013)
 - $pp \rightarrow H + j$ (R.B., Caola, Melnikov, Petriello, Schulze, 2013-2015)
- Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover, 2005)
 - $ee \rightarrow 3j$ (Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, 2007; Weinzierl, 20
 - $pp \rightarrow jj$ partial (Gehrmann-de Ridder, Gehrmann, Glover, Pires, 2013)
 - $pp \rightarrow H + j$ gg-only (Chen, Gehrmann, Glover, Jaquier, 2014)
 - $pp \rightarrow t\bar{t}$ partial (Abelof, Gehrmann-de Ridder, Maierhofer, Majer, Pozzorini, 20
- 'Colorful NNLO' (Del Duca, Somogyi, Trocsanyi 2005)
 - $H \rightarrow b\bar{b}$ (Del Duca, Duhr, Somogyi, Tramontano, Trocsanyi 2015)

Resummed Higgs cross section

Catani and Grazzini; Vogt and Moch

- N^3LL resummation exponents are available now.
- N^3LL resummation does not change the picture much. Fixed order N^3LO_{pSV} is very close to the N^3LL resummed result.

Rapidity of Higgs and its scale dependence at $NNLO, N^3LO$

- NNLO exact in the large top limit reduces the scale uncertainity significantly
- One of the most difficult computations in QCD. Is it the end?

Higgs+jet at NNLO

R.B., Caola, Melnikov, Petriello, Schulze, 2015

W+jet at NNLO

Radja Boughezal

 533^{+39}_{-38} pb

 $797^{+63}_{-49} \text{ pb}$

Very mild shift from NLO to NNLO and almost flat dependence on pTj

Top pair at NNLO

MC, Fiedler, Mitov, preliminary

M. Czakon

Di-photon at NNLO

Tevatron

LHC Catani et al.

Cross section increases by 30-40%

Infra-red safe observables

- We do not see quarks and gluons, we see only
- hadrons/bunch photons, weak

Algorithm

- Infra-red Safe observables are the only meas
- How to construct infra-red safe quatities in Q

Collection of partons

Infra-red safe definition of a Jet

• Example: What is a Jet

Jet Agorithms

- $\succ k_t$ Algorithm
- Cambride/Aachen algorithm
- > Anti k_t algorithm

SIS Cone ATLAS Cone CMS Iterative Cone GetJet

. . . .

. . . .

Successively Recombine the nearby partons

$$d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)$$

 $p = 1: k_t$ algorithm

p = 0: Cambridge/Aachen (C/A) algorithm

p = -1: anti- k_t algorithm

[Catani, Dokshitzer, Seymour, Webber, 93]

[Dokshitzer, Leder, Moretti, Webber, 93]

[Cacciari, Salam, GS, 08]

Cone: \approx flow of energy in a cone (of fixed *R*) centred on the cone centre: SISCone [Salam, GS, 07]

High Pt and invariant mass distributions of jets

Excellent agreement with NLO QCD predictions

Fine Jets and Boosted Jets

- Filtering: undo the last recombination, keep the subjets
- Trimming: remove low energetic deposits near a jet
- Pruning: recluster each jet in way wide angle recombinatio are absent

Boosted jets can probe Heavy states: new physics

Boosted Jet from W Boson

Boosted Jet from top quark

Conclusions

- QCD is a tool kit at Hadron Colliders
- Factorisation plays an important role for predictions
- Strong coupling constant and PDFs are under control
- Many NLO and few NNLO results are available to test SM and new physics
- Jet physics provides alternate ground for probing new physics.