AdS/CFT applied to condensed matter theory

Jarkko Järvelä

Department of Physics & Helsinki Institute of Physics University of Helsinki

December 2, 2015

伺 ト イヨト イヨト

э

Bekenstein-Hawking entropy of black holes (1973):

$$S_{BH} = rac{\operatorname{Area_{Event\,hor.}}}{4G_N}$$

Black hole entropy proportional to its area, not volume!

$$S_{BH} = rac{\operatorname{Area_{Event\,hor.}}}{4G_N}$$

- Black hole entropy proportional to its area, not volume!
- Holographic principle ('t Hooft, 1993): The physics of quantum gravity captured by a quantum field theory on the boundary

$$S_{BH} = rac{\operatorname{Area_{Event\,hor.}}}{4G_N}$$

- Black hole entropy proportional to its area, not volume!
- Holographic principle ('t Hooft, 1993): The physics of quantum gravity captured by a quantum field theory on the boundary
- ► First example: AdS/CFT duality (Maldacena, 1997)
 - ▶ N = 4 SYM in 4d Minkowski, w/ gauge group SU(N) \Leftrightarrow Type IIB string theory in AdS₅ × S⁵ background

$$S_{BH} = rac{\operatorname{Area_{Event\,hor.}}}{4G_N}$$

- Black hole entropy proportional to its area, not volume!
- Holographic principle ('t Hooft, 1993): The physics of quantum gravity captured by a quantum field theory on the boundary
- ► First example: AdS/CFT duality (Maldacena, 1997)
 - ▶ N = 4 SYM in 4d Minkowski, w/ gauge group SU(N) \Leftrightarrow Type IIB string theory in AdS₅ × S⁵ background
 - ▶ OR strongly coupled conformal field theory (d-dim.) \Leftrightarrow classical gravity in AdS_{d+1}

$$S_{BH} = rac{\operatorname{Area_{Event\,hor.}}}{4G_N}$$

- Black hole entropy proportional to its area, not volume!
- Holographic principle ('t Hooft, 1993): The physics of quantum gravity captured by a quantum field theory on the boundary
- ► First example: AdS/CFT duality (Maldacena, 1997)
 - ▶ N = 4 SYM in 4d Minkowski, w/ gauge group SU(N) \Leftrightarrow Type IIB string theory in AdS₅ × S⁵ background
 - ▶ OR strongly coupled (conformal) field theory (d-dim.) \Leftrightarrow classical gravity in AdS_{d+1}

$$S_{BH} = rac{\operatorname{Area_{Event\,hor.}}}{4G_N}$$

- Black hole entropy proportional to its area, not volume!
- Holographic principle ('t Hooft, 1993): The physics of quantum gravity captured by a quantum field theory on the boundary
- ► First example: AdS/CFT duality (Maldacena, 1997)
 - ▶ N = 4 SYM in 4d Minkowski, w/ gauge group SU(N) \Leftrightarrow Type IIB string theory in AdS₅ × S⁵ background
 - ► OR strongly coupled (conformal) field theory (d-dim.) \Leftrightarrow classical gravity in AdS_{d+1}
 - OR (virtually) impossible \Leftrightarrow possible

$$S_{BH} = rac{\mathrm{Area}_{\mathrm{Event \, hor.}}}{4G_N}$$

- Black hole entropy proportional to its area, not volume!
- Holographic principle ('t Hooft, 1993): The physics of quantum gravity captured by a quantum field theory on the boundary
- ► First example: AdS/CFT duality (Maldacena, 1997)
 - ▶ N = 4 SYM in 4d Minkowski, w/ gauge group SU(N) \Leftrightarrow Type IIB string theory in AdS₅ × S⁵ background
 - ► OR strongly coupled (conformal) field theory (d-dim.) \Leftrightarrow classical gravity in AdS_{d+1}
 - OR (virtually) impossible \Leftrightarrow possible
- Applications to thermalization, quantum information, condensed matter theory

- Study low-energy excitations of a cold strongly coupled non-relativistic condensed matter system
- ► Fermi liquid theory non-applicable here, we need AdS/CFT

- Study low-energy excitations of a cold strongly coupled non-relativistic condensed matter system
- ► Fermi liquid theory non-applicable here, we need AdS/CFT
- Use the probe brane approximation with DBI action w/ finite charge density

$$S = -T_D \int d^{q+1}x \sqrt{\det{(g_{ab} + F_{ab})}}, \ \ F = A_t' dt \wedge dr$$

- Study low-energy excitations of a cold strongly coupled non-relativistic condensed matter system
- ► Fermi liquid theory non-applicable here, we need AdS/CFT
- Use the probe brane approximation with DBI action w/ finite charge density

$$S = -T_D \int d^{q+1}x \sqrt{\det{(g_{ab} + F_{ab})}}, \ \ F = A_t' dt \wedge dr$$

 \blacktriangleright Solve $A_t',$ then fluctuate $F_{ab} \to F_{ab} + f_{ab}$ and solve EOMS of f_{ab}

- Study low-energy excitations of a cold strongly coupled non-relativistic condensed matter system
- ► Fermi liquid theory non-applicable here, we need AdS/CFT
- Use the probe brane approximation with DBI action w/ finite charge density

$$S = -T_D \int d^{q+1}x \sqrt{\det{(g_{ab} + F_{ab})}}, \ \ F = A_t' dt \wedge dr$$

- \blacktriangleright Solve $A_t',$ then fluctuate $F_{ab} \to F_{ab} + f_{ab}$ and solve EOMS of f_{ab}
- Find two modes: zero sound and diffusion

- Study low-energy excitations of a cold strongly coupled non-relativistic condensed matter system
- ► Fermi liquid theory non-applicable here, we need AdS/CFT
- Use the probe brane approximation with DBI action w/ finite charge density

$$S = -T_D \int d^{q+1}x \sqrt{\det{(g_{ab} + F_{ab})}}, \ \ F = A_t' dt \wedge dr$$

- \blacktriangleright Solve $A_t',$ then fluctuate $F_{ab} \to F_{ab} + f_{ab}$ and solve EOMS of f_{ab}
- Find two modes: zero sound and diffusion
- ▶ We can compute susceptiblity, heat capacity, conductivity etc.