### Jet Images Deep Learning Edition

Luke de Oliveira<sup>1</sup>, Michael Kagan<sup>2</sup>, Lester Mackey<sup>3</sup>, Benjamin Nachman<sup>2</sup>, Ariel Schwartzman<sup>2</sup>

<sup>1</sup>Stanford University, Institute for Computational and Mathematical Engineering <sup>2</sup>SLAC National Accelerator Laboratory <sup>3</sup>Stanford University, Department of Statistics

Stanford Institute for Computational & Mathematical Engineering





- The notion of a jet-image
- Image pre-processing
- Unique considerations
- Deep Architectures + performance
- Isolating "the physics" how can we learn from deep learning?



## Image details

- Proof of concept
- Simulate pixelation conditions of the ATLAS detector
  - (0.1 x 0.1 pixels)
- Normalization / no-normalization
- $W \rightarrow WZ$ , with  $W \rightarrow qq$ ,  $Z \rightarrow vv$
- Require clustered subjet  $p_T > 5\%$  of jet  $p_T$

# Image Preprocessing

- Account for symmetries of spacetime see [2] for more details
- Want the image to be centered at  $(\eta, \phi) = (0, 0)$ 
  - $\phi$ -rotation is around z-axis, so this is fine
  - $\eta$ -rotation is a Lorentz-boost along the *z*-axis, so replace  $E_i$ with  $p_{T,i} = E_i / \cosh(\eta_i)$
- Image is rotated so sub-leading subjet is at  $-\pi/2$  cubic spline interpolation for new grid
- Finally, flip so harder side is consistent

jamin Nachman and Ariel Schartzman

SLAC, Stanford University



#### Boos

SLAC

 $\mathbf{N}$ 

#### Boosted Boson Type Tagging

Jet ETmiss



#### Boosted Boson Type Tagging Jet ETmiss

#### Benjahlin Alac sagentard philes Schartzman



SI AC Stanford University

less pronounced second subjet

#### Unique Deep Learning Considerations

(or, why I find the problem interesting)

- Sparsity
- Invariance
- Can search for feature representations (rare luxury in ML)
- CNN filters (11x11)! These are huge! Use FFT-based convolutions [3]
  - Why so big?
- Because of HEP knowledge, can "marginalize" known components



#### Boosted Boson Type Tagging

Jet ETmiss



# Boosted Boson Type Tagging *Jet ETmiss*



Boosted Boson Type Tagging

March 26, 2014 1 / 2

## Understanding Performance

- Idea Mass,  $\Delta R$ , and *n*-subjettiness are supposed to capture all information
- Method 2D likelihood of CNN and mass/ $\Delta$ R/n-subjettiness
- Check if P(signal | DNN) ~ P(signal | DNN, mass), we have learned (to a first order) the effect of mass



#### Boosted Boson Type Tagging

Jet ETmiss



Jet ETmiss

#### Beniamin Nachman and Ariel Schartzman



B. Nachman (SLAC)

 $X_{\mathrm{sig}} * w - X_{\mathrm{bkg}} * w$ 

March 26, 2014 1 / 2



# Boosted Boson Type Tagging *Jet ETmiss*



# Identifying what we learn

• Can re-weight samples such that physics features have no discriminatory power, i.e.,

$$\frac{P(\text{signal}|X, m, \tau_{21}, \Delta R, p_T)}{P(\text{bkg}|X, m, \tau_{21}, \Delta R, p_T)} \approx 1$$

 For a given pixel p<sub>ij</sub>, calculate the weighted Pearson Correlation Coefficient over the entire test set

$$\rho_W(p_{ij}, y_{\rm DNN})$$

• Can arrange this in an image

## What do we learn beyond?



# Concluding Remarks

- Treat the LHC as a camera what can we learn about physics?
- Outperform the state-of-the-art why?
- End-to-end learning go to lowest level inputs
  - No loss of information
- Great example of ML + HEP collaboration

### Citations

- J. Cogan, M. Kagan, E. Strauss, A. Schwartzman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118. Preprint: <u>1407.5675</u> [hep-ph].
- L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, *Jet Image: Deep Learning Edition*, Preprint: <u>1511.05190</u> [hep-ph]
- Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, Yann LeCun, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation, <u>1412.7580</u> [cs.LG]