Design of the 9-cell superconducting cavity for EUV light source accelerator

Taro Konomi, Kensei Umemori, Takayuki Kubo, Hiroshi Sakai, Eiji Kako (KEK)
Masaru Sawamura(QST)、Tomoko Ota(Toshiba)
1. EUV Light source Project
 1. Introduction of EUV light source
 2. Parameters of EUV accelerator

2. EUV module
 1. Cavity Parameter
 2. Concept of EUV module

3. HOM damper development
 1. RF parameters
 2. Outgassing
 3. Secondary electron yield
 4. Brazing test

4. EUV cavity design
 1. Cell design concept for HOMs
 2. Center cell passband
 3. Beam pipe diameter
 4. End cell design
 5. Optimization for Dipole HOMs
 6. Optimization for Monopole HOMs
 7. Parameters of EUV cavity

5. Summary
1-1 Introduction of EUV light source

- Lithography for LSI needs short wavelength and high power to continue to meet the Moore’s Law.
- **13.5nm** EUV (Extreme Ultra-violet) light is the strongest candidate for new generation light source, because this wavelength is matched to Mo/Si multilayer mirror system.
- High light power source also required for mass production.
- 13.5 nm and 250 W LPP (Laser Produced Plasma) has been developed for 30 years.
- In near future, a new light source which has 13.5nm or more short wavelength and high power will be required.
1-1 Introduction of EUV light source

- LPP needs 20kW high power CO$_2$ laser. The conversion efficiency from CO$_2$ laser to EUV light is ~5%. LPP EUV power will be limited at several hundred Watts.
- CW ERL+FEL accelerator is the strongest candidate for next light source.
- We started designing 13.5 nm and 10 kW class EUV accelerator.

ERL+FEL accelerator size is acceptable, because the size fit to regular factory site.
1-1 Introduction of EUV light source

- KEK has the experience of cERL and STF development.
- cERL commissioning is still in progress. Beam current will be increased to 10 mA.
- STF is the superconducting cavity test facility for ILC.

KEK-cERL (PEARL)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target</th>
<th>Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>35 MeV</td>
<td>20 MeV</td>
</tr>
<tr>
<td>Beam current</td>
<td>10 mA</td>
<td>0.95 mA</td>
</tr>
<tr>
<td>Normalized Emittance</td>
<td>0.1 (@7.7 pC/bunch)</td>
<td>0.3 (@0.5 pC/bunch)</td>
</tr>
<tr>
<td></td>
<td>1 (@ 77 pC/bunch)</td>
<td>1-2 (@ 7.7 pC/bunch)</td>
</tr>
<tr>
<td>Bunch repetition</td>
<td>1.3 GHz</td>
<td>1.3 GHz (usual)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>162.5 MHz (for LCS)</td>
</tr>
<tr>
<td>Pulse length (rms)</td>
<td>1-3 ps: usual</td>
<td>1-3 ps: usual</td>
</tr>
<tr>
<td></td>
<td>~100 fs: compression</td>
<td>~150 fs: compression</td>
</tr>
<tr>
<td>Main Linac gradient</td>
<td>15 MV/m</td>
<td>8.2 MV/m</td>
</tr>
</tbody>
</table>

KEK-STF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage QB project</th>
<th>Target</th>
<th>Stage Phase 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>40 MeV</td>
<td>21.5 MeV</td>
<td></td>
</tr>
<tr>
<td>Beam current</td>
<td>10 mA</td>
<td>8.7 mA</td>
<td></td>
</tr>
<tr>
<td>Bunch length</td>
<td>12 ps (FWHM)</td>
<td>10 ps (FWHM)</td>
<td></td>
</tr>
<tr>
<td>Pulse repetition</td>
<td>5 Hz</td>
<td>5 Hz</td>
<td></td>
</tr>
<tr>
<td># of bunch/pulse</td>
<td>162,500</td>
<td>2437</td>
<td></td>
</tr>
</tbody>
</table>

Emittance is higher than target value because main linac voltage links to injection energy.

STF 2.0 cavities setup was finished. STF2.0 beam operation will be started from 2017.
KEK- EUV Accelerator Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Target value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>13.5 nm</td>
</tr>
<tr>
<td>EUV Power</td>
<td>10 kW</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>60 pC</td>
</tr>
<tr>
<td>Beam energy</td>
<td>800 MeV</td>
</tr>
<tr>
<td>Repetition frequency</td>
<td>162.5 MHz</td>
</tr>
<tr>
<td>Average current</td>
<td>9.75 mA</td>
</tr>
<tr>
<td>Accelerating gradient</td>
<td>12.5 MV/m</td>
</tr>
<tr>
<td>Number of cavities</td>
<td>64 units</td>
</tr>
</tbody>
</table>

- KEK and Japanese industries organized EUV-FEL light source study group for industrialization since 2015.
- Bunch length at main linac will be 1-3 ps.
- Main linac has 64 units of 9-cell superconducting cavity.
- EUV beam current is lower than KEK-cERL target. Therefore, the requirement of the HOM damping efficiency decreases on EUV.
 - cERL operated at 8.5 MV/m, because it has the large iris to damp HOM powerfully.
 - We redesign the cavity shape to realize stable 12.5 MV/m CW operation.
2-1 EUV cavity parameters

Concepts of Cavity design

- EUV cavity was designed based on KEK-cERL main linac ⇒ Large beam pipe + Beamline damper
- EUV beam pipe diameters is Φ100mm and Φ110mm ⇒ Make asymmetry actively and damp high frequency HOMs.
- The center cell shape is TESLA cell to decrease Ep/Eacc=2 ⇒ Stable operation at 12.5 MV/m

<table>
<thead>
<tr>
<th>Cavity Parameters</th>
<th>KEK-EUV</th>
<th>KEK-cERL</th>
<th>TESLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Iris diameter (mm)</td>
<td>70</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>R/Q (Ω)</td>
<td>1009</td>
<td>897</td>
<td>1036</td>
</tr>
<tr>
<td>G (Ω)</td>
<td>269</td>
<td>289</td>
<td>270</td>
</tr>
<tr>
<td>Ep/Eacc</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Hp/Eacc (mT/(MV/m))</td>
<td>4.23</td>
<td>4.25</td>
<td>4.26</td>
</tr>
<tr>
<td>BBU limit</td>
<td>>190 mA (EUV)</td>
<td>~600 mA (3GeV ERL)</td>
<td>~10 mA (3GeV ERL)</td>
</tr>
</tbody>
</table>
2-2 Concepts of EUV module

- EUV module consists 4+4 cavities and the design based on STF and ERL module.
- Coupler position is opposite direction each cavity, because the beam pipe sizes are different.
- Input coupler and tuner are same type of ERL and STF.
- HOM damper needs new development.
2-2 Concepts of EUV module

Input coupler
- Pulse version was designed for STF and modified for CW at cERL.
- **cERL coupler working well** (very similar specification with EUV)
- $Q_{ext}=2\times10^7$ require 4~5 kW input power for $E_{acc}=12.5$ MV/m
- Apply for EUV with some trial of compact version.

Frequency tuner
- Rough tuning by Slide-Jack tuner controlled by motor
 - Full stroke 3mm (~1MHz)
- Fine tuning by piezo tuner
 - Precision \leqnm
- **Working very well at cERL and STF**
- Apply for EUV
3-1 Test piece of the HOM damper

- cERL HOM absorber (ferrite) has cracks ⇒ not good for SRF usage.
- AlN (Sienna Tec. : STL-150D) is strong candidate for absorber.
 - AlN is tested at Cornell and DESY
- We started the measurement of RF parameter, outgassing and brazing.

RF parameter measurement

- RF parameters are measured by Nicolson-Loss method.
- 80K data was taken in nitrogen gas atmosphere.
- Test sample and RF cables did not touch liquid nitrogen.
- Room temperature data agrees well with the Sienna tec. Data.
- 80K tangent delta keeps high value at high frequency.
- We will try to take more high frequency data.
SEY of AlN samples:
- SEY was measured after applying ~150 °C baking.
- Baking time is 0, 2, 7, 24, 48, 120, 192 and 312 hours
- SEY saturated after 48 hour baking.

Comparison of SEY with other materials:
- SEY measured around 250 eV were compared between materials.
- Horizontal axis is baking time.
- Red line is AlN.
- AlN is lower than Al
Outgassing rate of AlN ring was measured after 48h x150 °C baking. After 1000h baking, outgassing rate is lower than 10^{-8} Pa·m3/s·m2.

Outgassing rate ~ Measured by Shinji Terui (KEK)
3-4 Brazing test

- AlN cylinder was brazed in the copper cylinder which has the comb pattern.
- Ultrasonic testing in the water bath was done after brazing.
- Point A is outside of AlN. It has the second peak at 73us.
 \(\Rightarrow \) The boundary of copper and water reflects the ultrasonic wave.
- Point B is inside of AlN. It does not have second peak around 73 us.
 \(\Rightarrow \) Copper and AlN is touched.
- The color of scanning image shows the echo height.
- Touched points are not bright. It suggest the joint strength is poor.

- We tried thermal test. Unfortunately, AlN cylinder came off after first 80K thermal cycle.
- Machining error or brazing parameter error are suspected.
- We search the best condition for brazing.

Test piece of brazing
4-1 Cavity design concept for damping HOMs

- EUV cavity was designed focusing on the low frequency HOMs.
- Passband of 9-cell HOMs are ruled by the center cell
 ⇒ R/Q and Rt/Q changes are small
 ⇒ To lower the impedance R and Rt, Q_{ext} control is required
- We did the frequency matching to lower Q_{ext} because HOMs are pass through the end cells and damped at beam line damper

Step3: Search best frequency of end cell
- Tuning curve method can calculate only π mode frequency.
- If the highest impedance mode is not π mode, end cell frequency searching is required.

Cell design process

Step1: Calculate frequency

Center cell ⇒ Eigen mode solver
End cell ⇒ Tuning curve method
 (this method can calculate only π mode)

Response matrix of end cell HOM frequency was made by this method.

Step2: Search Minimum Q_{ext} shape

End cell shapes were designed by using the matrix. There are many shapes which agree with a target frequency
 ⇒ Select minimum Q_{ext} shape
4-2 Center cell passband

Step 1
- EUV center cell is TESLA shape.
- We will try to match end cell frequency to center cell passband.

Passband of TESLA center cell
4-3 Beam pipe diameter

• φ100mm and φ110mm beam pipes are selected.
• Beam pipe diameters are minimized to suppress leaking accelerating field.
• Different diameters are selected to make the asymmetry actively and damp the high frequency HOMs.
• TE11 cutoff frequencies of 100mm and 110mm beam pipe are 1600MHz and 1760MHz.
• High impedance TE111 dipole HOM is damped by both beam line damper.
• Monopole cutoff frequencies are lower than all monopole HOMs.

<table>
<thead>
<tr>
<th>Beam pipe diameter</th>
<th>Cutoff monopole (TM01)</th>
<th>Cutoff Dipole (TE11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ110</td>
<td>2086.4</td>
<td>1597.1</td>
</tr>
<tr>
<td>φ100</td>
<td>2295.0</td>
<td>1756.8</td>
</tr>
</tbody>
</table>

Passband of TESLA Center Cell

Formula of cutoff

Monopole TM01-mode

\[f_{TM} = \frac{c}{2\pi} \left(\frac{j_{mn}}{a} \right) = \frac{229.50}{\phi} [MHz] \]

Dipole TE11-mode

\[f_{TE} = \frac{c}{2\pi} \left(\frac{j'_{mn}}{a} \right) = \frac{175.68}{\phi} [MHz] \]
4-4 End Cell design

Step 1
- End cell frequency was calculated by tuning curve method because end cell and beam pipe have strong coupling.
- Tuning curve method can separate cell and beam pipe frequency.
- Imaginary short plane is the magnetic boundary.
- Therefore this method can calculate only π mode frequency.

Frequencies are calculated with various beam pipe length.

Red line is the cavity resonance
green curve is the beam pipe resonance.
4-4 End Cell design

Step 1

- Frequency and Qext response of TM010,TE111,TM110,TM011 were calculated.
 ⇒ Response matrix was created
- Cell length and iris diameter have the major effect.
- Modify the end cell shape by using the response matrix.
 ⇒ End cell π mode frequency can be adjusted to the target frequency.
 ⇒ But target frequency sweep is required because other end cell passband are unknown.
- We tried to found the best end shape which matches center cell π mode frequency
 ⇒ But, there is no shape which matches more than 3 HOMs at once by this matrix method.
- Matching HOMs were divided into each end cell.
 ⇒ Φ100mm BP cell adjust to TE111 and TM011.
 ⇒ Φ110mm BP cell adjust to TM110 and TM011.
4-4 End cell design

Step 2 Example (Φ110mm BP cell)
- TE111 and TM011 end cell frequency adjust to center cell π mode.
 \Rightarrow Delta means the difference from center cell π mode frequency
- Gray color area is constrained condition.
 - Re-entrant shape is not better for HPR or other water cleaning.
 - Pressing can be possible.
 - If change amount is higher than 20mm, the shape become triangle shape.
- The star shows the minimum Qext shape. This is a candidate.

Constrained conditions
- Not re-entrant shape: $\text{Xlen}-A1-A2>0\text{mm}$
- Pressing is possible: Absolute value $>5\text{mm}$
- Feasible shape: Change amount $<20\text{mm}$

TE111 Qext of Φ110 BP cell
Condition $\Delta f(\text{TE111})=0\text{MHz}$, $\Delta f(\text{TM011})=0\text{MHz}$

Minimum Qext. This is a candidate.
4-5 Optimization for Dipole HOMs

- The end cell frequency was swept to match the high impedance passband mode.
- Target impedance is 5.5x10^4 which BBU threshold is 200mA.
- Legend shows the delta frequency from center cell π mode.
- All Shapes satisfy dipole mode target.
- We focused on monopole HOMs.

φ110BP cell tuning for **TE111**

φ100BP cell tuning for **TM110**
4-6 Optimization for Monopole HOMs

- Highest impedance of monopole HOM is the TM110-π/9 mode.
- Both end cells were tuned to minimize the highest impedance mode.
- Minimum value of $R/Q*Q_{ext}$ is 5×10^4 Ohm. Both delta frequencies are about +5MHz.

\Rightarrow Heating Power is 20W if the beam repletion hits the HOM frequency.

Monopole HOM Power

$$P_b = \left(\frac{R}{Q}\right)Q_{ext}I_0^2$$

$$= 5 \times 10^4 \times (0.02 A)^2 = 20 W$$
Parameters of EUV cavity

- Ep/Eacc is 2.0 because the center cell is TESLA shape.
- EUV monopole HOM is lower than cERL because the cERL was optimized for dipole HOMs.

<table>
<thead>
<tr>
<th>Cavity Parameters</th>
<th>KEK-EUV</th>
<th>KEK-cERL</th>
<th>TESLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Iris diameter (mm)</td>
<td>70</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>R/Q (Ω)</td>
<td>1009</td>
<td>897</td>
<td>1036</td>
</tr>
<tr>
<td>G (Ω)</td>
<td>269</td>
<td>289</td>
<td>270</td>
</tr>
<tr>
<td>Ep/Eacc</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Hp/Eacc (mT/(MV/m))</td>
<td>4.23</td>
<td>4.25</td>
<td>4.26</td>
</tr>
<tr>
<td>BBU limit</td>
<td>>190 mA (EUV)</td>
<td>~600 mA (3GeV ERL)</td>
<td>~10 mA (3GeV ERL)</td>
</tr>
</tbody>
</table>

Acc.

Monopole HOM

- R/Q*Q_{ext} (Ohm)

Dipole HOM

- R/Q*Q_{ext}/f (Ohm/cm²/GHz)
 - Target 5.5x10^4
Summary

• EUV cavity has been designing for EUV-ERL/FEL accelerator.
• Cryomodule has been designing based on STF+ERL cryomodule.
• Damper development is important for EUV
• We have measured the RF parameter, outgassing, SEY, brazing.

• Cavity designed based on KEK-cERL +TESLA cavity.
 ⇒ TESLA center cell + beam line damper
• Maximum impedance of Dipole HOM is 3×10^4 Ohm/cm2/GHz.
 ⇒ BBU limit is more than 190 mA.
• Maximum impedance of Monopole HOM is 5×10^4 Ohm.
 ⇒ This HOM power is lower than 20 W