HOMs for Superconducting Deflecting and Crabbing Cavities

Subashini De Silva

Center for Accelerator Science Old Dominion University

Warnemunde, Germany – 22–24 August, 2016

Deflecting / Crabbing Concept

PUB-4707

Superconducting Crabbing Cavities

• All superconducting crabbing cavities are for collider applications

Past, Present and Future Crabbing Systems

- KEK Crabbing Cavity for KEKB Factory
- SPX Crabbing Cavity
- LHC High Luminosity Upgrade
 - 4-Rod Crabbing Cavity
 - Double Quarter Wave (DQW) Crabbing Cavity
 - RF-Dipole Crabbing Cavity
- Future Colliders
 - eRHIC
 - JLEIC

Crabbing System for KEKB Factory

*Accelerator Design Report, KEK SuperB Factory (2004)

OMINION

KEK Crabbing Cavity

- Operating frequency 508.9 MHz
- Squashed elliptical cavity operating in TM₁₁₀ mode
 - Crabbing mode is not the lowest mode
 - Separates the modes with same polarization

Transverse Voltage#	HER	LER
Test at Vertical Cryostat	1.9 MV	2.7 MV
At Test Stand	1.8 MV	1.93 MV
Operational	1.7 MV	1.43 MV

KEK Crabbing Cavity – RF Properties*

Frequency	508.9	MHz		
LOM	410.0	MHz		
Nearest HOMs	630.0, 650.0, 680.0	MHz		
E_p^{*}	4.24	MV/m		
B_p^{*}	12.23	mT		
B_p^*/E_p^*	2.88	mT/(MV/m)		
$[R/Q]_T$	48.9	Ω		
Geometrical Factor (<i>G</i>)	227.0	Ω		
$R_T R_S$	1.11×10 ⁴	Ω^2		
At $E_T^* = 1$ MV/m				

* K. Hosoyama et al, "Crab Cavity for KEKB", Proc. of the 7th Workshop on RF Superconductivity, p.547 (1995)

K. Oide, "Status of SuperKEKB", March 2007

Complex HOM Damping Scheme

HOM Damping for KEK Crabbing Cavity

- Notch filter:
 - Placed at the end of the coaxial coupler rejects crabbing mode flow
- RF Absorbers:
 - HOMs induced by high current beam are extracted from the Input Coupler cavity through the large beam Crab Cavity Cell pipe and damped by the ferrite absorbers
- Total HOM power per cavity: 16 kW

- Low impedance due to low Q_{ext}
- Coaxial coupler:
 - $\circ~$ Designed to extract the lower order mode (TM_{010}) and TE_{111} mode
 - Multipacting observed at low RF levels and processed in about 1 hour
 - Centered accurately to prevent propagation of crabbing mode

Crabbing Cavity for Short Pulse X-ray (SPX) Project

Crabbing Cavity for SPX Project

RF Properties^{*}

Parameter	Baseline Design	Alternate Design	Units
Frequency	2.8	15	GHz
Beam iris	25	5	mm
V_t	0.5	MV	
B_p/V_t	195.6	200.8	mT/MV
E_p/V_t	82	81.5	1/m
$[R/Q]_t$	35.8	37.1	Ω
G	227.5	227.8	Ω
Material thickness	3 Nb Sheet	4 Nb Block	mm
Material thickness	3 IND Sheet	4 ND Block	mm

Cavity Comparison	MARK I	MARK II
Beam impedance margin	Meets Specs	Excellent
LOM Coupling	on beam pipe	on cavity cell
RF Kick Performance	same	same
Size		Compact
Induced HOM power	Meets Specs	Better

^{*}H. Wang, "SPX Crab Cavity Development and Testing Result", TTC Meeting, Nov, 2012 [#]J. Mammosser, "SPX Cryomodule Design", APS-U Lehman Review, May 2011

HOM Damping of SPX Crabbing Cavity

- HOM power (w/beam) 492 W
- LOM power (w/beam) 1800 W
- Long. threshold: $R_s \times f_p < 0.44 \text{ M}\Omega \text{GHz}$
- Horz. Dipole threshold: $R_t < 1.3 \text{ M}\Omega/\text{m}$
- Vert. dipole threshold: $R_t < 4.5 \text{ M}\Omega/\text{m}$
- Red line Baseline Design

10

10

10

104

10³

10²

10

99Ť77

OMINION

Dipole Impedance in horizental direction (Ohm/m)

Black line – Alternate Design

H. Wang, Wakefield/Impedance Considerations for APS and LHC Crab Cavities", July 2012

Crabbing Cavities for LHC High Luminosity Upgrade

- Proton beam energy: 7 TeV
- Crossing angle: 0.59 mrad
- Requires two crabbing systems at:
 - IP₁ (ATLAS) Vertical crabbing
 - IP₅ (CMS) Horizontal crabbing
- RF frequency $(f_c) = 400.79$ MHz
- Total transverse voltage (V_t) per beam per side = 13.4 MV
- Total 16 crabbing cavities per type
- Transverse voltage per cavity = 3.4 MV

LHC Crabbing Cavities

- Requires compact designs due to low operating frequency
- TM₁₁₀ squashed elliptical geometries are not favorable
- Solution: Designs operating in TEM or TE-like modes

Operating in TEM mode Surface Electric Field Surface Magnetic Field

4-Rod Cavity

Double Quarter Wave Cavity Operating in TE-like mode

B Field

Page 11

4 – Rod Crabbing Cavity

Courtesy: G. Burt (Lancaster University)

 Initial concept from Jefferson Lab normal conducting 499 MHz rf separator

- Improved design:
 - Increased separation between the rods and wider rods
 - Makes rods closer to the outer wall of the cavity
- Proof-of-Principle Cavity

4 eigenmodes, mode 2 is our crab mode

4-Rod P-o-P Cavity Cold Test

- RF test performed at CERN
- Cavity reached operating gradient with a high residual resistance
- Possible contribution to losses due to the stainless steel couplers
 - Copper
 - Q₀ = 7.189E9
 - R_s = 8.3 nOhm
 - Stainless Steel
 - Q₀=2.737E9
 - R_s = 22.0 nOhms

4 – Rod Prototype Crabbing Cavity

- Three HOM couplers
 - LOM coupler
 - Horizontal HOM (H-HOM) coupler
 - Vertical HOM (V-HOM) coupler
- All the couplers are in low magnetic field regions

- All modes up to 2 GHz are damped up to the required impedance
- CST calculates few spurious non-existent modes in the couplers
- All 3 components are calculated for each mode

HOM Coupler Designs of 4-Rod Cavity

LOM Coupler

Sees very little crabbing mode

H-HOM Coupler

- Sees very little crabbing mode
- Sees some electric field
- Low magnetic field

V-HOM Coupler

• All the couplers are in low magnetic field region

Double Quarter Wave Crabbing Cavity

286mm

Proof of Principle Cavity

Courtesy: Q. Wu (BNL)

Wall thickness = 4mm

352mm

524mm

 \odot

Prototype Cavity

288mm

320mm

	P-o-P Prototype Cavity Cavity		
Frequency	400	400	MHz
1 st HOM	579	580	MHz
V_t	3.3	MV	
E_p	49	40.7	MV/m
B_p	80	70.9	mT
$[R/Q]_t$	406	430	Ω
G	85	89	Ω
$R_t R_s$	3.45×10 ⁴	3.83×10 ⁴	Ω^2

Prototype cavity

- More compact design
- Lowered peak magnetic field

DQW P-o-P Cavity Cold Test

- Q₀ reached 3×10⁹ at low field at 2K
- Multipacting is conditioned within 30 minutes
- Reached 4.6MV kick in CW with Q₀ above 2×10⁹, limited by quench *d*⁸
- Quench field at ~110mT, with peak E field at 52.8MV/m
- *R*_s at 4.3K: 57nΩ and at 1.9K: 21.6nΩ
- *R_{res}* is 21.5nΩ

HOM Coupler Designs of DQW Cavity

- Three identical HOM couplers
 - Maximum magnetic field on the HOM coupler is 52 mT
 - Maximum HOM power of 1 kW/coupler
- Locations of the couplers are specifically chosen to allow sufficient coupling to all HOMs (with extra damping from Pick Up coupler)
- Coupler hook and filter will be actively cooled by liquid helium
- Pick-up coupler provide damping for a specific HOM at 1.75 GHz

HOM Damping of DQW-HOM Couplers

- Impedance of all longitudinal modes are damped below 1e5 Ohm
- Impedance of all transverse modes are damped below 4e6 Ohm/m.
- Liquid He jacket and hollow channels provides direct cooling to high magnetic field region.
- Wide stop-band at 400 MHz allows reasonable fabrication and assembly errors

RF-Dipole Crabbing Cavity

Proof of Principle Cavity

Prototype Cavity

*S.U. De Silva and J.R. Delayen, PRAB 16, 012004 (2013) #S.U. De Siva and J.R. Delayen, PRAB 16, 082001 (2013)

	P-o-P Cavity	Prototype Cavity	
Frequency	400	400	MHz
1 st HOM	590	633.5	MHz
V_t	3.	.4	MV
E_p	37	33	MV/m
B_p	64	57	mT
$[R/Q]_t$	287	430	Ω
G	141	107	Ω
$R_t R_s$	4.0×10 ⁴	4.6×10 ⁴	Ω^2

Prototype cavity

- Well separated HOMs
- Reduced surface electric and magnetic fields
- High shunt impedance
- Improved multipacting levels
 compared to P-o-P cavity
- Reduced multipole components

RFD P-o-P Cavity Cold Test

- Surface treatment and rf testing done at Jefferson Lab
 - Test I April, 2012
 - Test II June, 2014
- Test at CERN October, 2014
 - Low Q₀ due no magnetic field compensation

- Cavity reached a V_t of 7.0 MV
 - Retested with Nb coated flanges provided by CERN
 - Q_0 increased by a factor of 3 from 4×10^9 to 1.2×10^{10}
- Multipacting was processed easily and did not reoccur

HOM Coupler Designs of RFD Cavity

- Two HOM couplers
 - Horizontal HOM (HHOM) coupler
 - Vertical HOM (VHOM) coupler
- Modes up to 2 GHz are well damped below requirement impedance
- Couplers at locations of low field region on cavity body
 - Minimizes RF heating on the coupler components
- Location preserves field symmetry
 - Electrical center moved by only 50 microns
- H-HOM coupler with 30 degree hook orientation with no change to filter elements
- Selective coupling (V-HOM) to reduce the number of filters
 - 7 mm offset incorporated into the probe tip to enhance coupling to the dipole modes at around 2 GHz
 - Small RF power leakage through the coupler, ~1.5W, due to asymmetry

HHOM High Pass Filter

HOM Damping for RFD Cavity

- Q_{ext} calculated using Omega3P (SLAC ACE3P suite) for modes up to 2 GHz
- Solid lines are the impedance budget for dipole HOMs (blue) and accelerating HOMs (red) respectively
- Damping scheme meets the LHC High-Luminosity Upgrade impedance requirements

RFD Cavity & HOM Coupler Fabrication

- Courtesy: Niowave Inc.
- Cavity sub-assemblies
- Fabricated Cu prototypes of
 - Demountable HHOM coupler
 - VHOM coupler probe

Cu HOM Couplers

Nb H-HOM Coupler

VHOM

HHOM

HOM COUPLER MEASUREMENTS

- Measurement of S₂₁ of bare HOM coupler and with stacked cavity
- Complete rejection of fundamental mode

S21 Measurements of Soldered Assembly in Free Space

Crabbing Cavity for eRHIC - BNL

Beam Dump

Polarized

Electron Source

100 meters

Energy Recovery Linac, 1.32 GeV

Coherent

Electron Coole

hadrons

Detector II

From AGS

Detector I

- 250 GeV polarized protons and 15.9 GeV electrons
- Crabbing system For both hadrons and electrons to avoid ~50 times loss of luminosity due to collisions at crossing angle
- L ~ 5×10³³ cm⁻²s⁻¹
- Crossing angle 10 mrad
- Horizontal local crabbing scheme
- Higher harmonic cavities are planned to correct non-linearity kick

Crab cavities for:	250	GeV prot	on	21.2 GeV e-	
freq [MHz]	225	450	676	676	
N _{cavities}	4	2	1	1	
V _{defl} [MV]	6.19	2.79	0.76	1.90	

Crabbing Cavity for JLEIC - JLAB

- Local crab scheme
- Crossing angle 50 mrad

Parameter	(A)	(B)	(C)	Units
Aperture diameter	50	60	70	mm
Vt per cavity	3.3	3.0	2.8	MV
Ep	33	33	33	MV/m
Bp	61	64	68	mT
No. of cavities (e/p) per side	1/6	1/7	1/7	

Summary

- KEK crabbing cavity First demonstration of successful implementation and operation of a superconducting crabbing cavity
- No crabbing cavity has been demonstrated on a machine with proton beam
- Future compact crabbing cavities for LHC High Luminosity Upgrade
 - Double quarter wave cavity
 - RF-dipole cavity
- Concept has been successfully tested with Proof-of-Principle cavities
- Prototype cavity designs for SPS test at CERN are completed including FPC, HOM couplers and other ancillary
- Cavities and HOM couplers are being fabricated

Acknowledgements

- BNL Q. Wu, S. Verdu-Andres, B. Xiao
- ODU Jean Delayen, HyeKyoung Park, Rocio Olave, Alex Castilla
- SLAC Zenghai Li
- CERN Benoit Salvant, Rama Calaga, Ofelia Capatina and the team
- Fermilab Tom Nicol
- LBNL A. Ratti

Impedance Budget

