

HOM damping concepts of the bERLinPro Energy Recovery Linac Project

A. Neumann, ICFA Mini Workshop on HOMs in SC Cavities 22-24 August 2016, Warnemünde

For the bERLinPro team and collaborators

Motivation

bERLinPro: A demonstrator for a low emittance, high brilliance Energy Recovery Linac

Main goal: Demonstrate high current low emittance operation using CW SRF energy recovery linac

Motivation

Next Milestones

This fall completion of Gun modul and setup of dedicated testlab called Gunlab: Characterize SRF Gun, beam parameters, cathode studies, etc....

→until Fall 2017

limited to 5 µA avg. beam current by radiation protection

Order Booster parts

and Linac prototype

Beginning of 2018 installation of magnets and vaccum system

Move gun modul to bERLinPro accelerator hall, first beam at bERLinPro about Spring 2018. 2.5 MeV – 3 MeV, up to 5mA

Fall 2018 installation of booster module and first beam into high

power dump, 6.5 MeV

Later.....

bERLinPro: 3 different cavity types for different requirements

5 Waveguide absorber (25W/load)

1 Variable coupler + 2 beam tube in module

Cavity prototype
Production readiness phase

Main Linac Cavity (7-cell)
Preserve emittance
Se High beam current

- Zero beam power
- High field level
- Multi-pass beam
- High Q_L→
 Microphonics
- Recovery issues

Coupler ordering Module design

Module design Booster Cavity (2-cell)

- Preserve emittance
- High beam current
- High beam power
- Intermediate field level

Final module assembly

SRF Gun (1.4 cell)

- Low emittance beam
- High beam current
- High beam power
- Intermediate field level
- High on-axis peak fields

Major project challenge: 3 different type of cavities and modules

All cavities can be considered as prototypes and are manufactured only in small numbers (funding)

Design Parameter	Gun	Booster	Linac	
Type of operation	CW, high beam power, high peak on-axis field	CW, high beam power, intermediate acc. field	CW, high beam current high acc. field	
Number of cells TM _{010-π} frequency (MHz) Operating temperature (K) Beam current (mA) HOM absorber FPC type Energy gain/cavity (MeV) Beam emission or RF phase (deg)	1.4×\(\lambda/2\) 1300 1.8 100 (4) beam tube twin modified c-ERL (TTF-III) 2.3 (3.5) 40-60	2× $\lambda/2$ 1300 1.8 100 beam tube twin modified c-ERL 2.1 -90 and 0	$7 \times \lambda/2$ 1300 1.8 2×100 waveguide + beam tube single modified TTF-III 14.8 -15	
R/Q_{\parallel} for $\beta=1$ (Ω) Geometry factor G (Ω) $E_{\rm peak}/E_{\rm acc}^{-1}$ $B_{\rm peak}/E_{\rm acc}^{-1}$ (mT/MVm ⁻¹) $Q_{\rm loaded}$ for TM _{010-π} Max. $Q_{\rm ext}$ 1 st TM dipole band $P_{\rm forward}$ at $\Delta f=0$ (kW) $\Delta f/\Delta P$ (Hz/mbar)	150 (132.5) 174 (154) 1.45 (1.66) 3.2 1.1·10 ⁵ (3.6·10 ⁶) 11 · 10 ³ 230 (up to 5.8)	$ \begin{array}{r} 219 \\ 261 \\ 2.02 \\ 4.44 \\ 1.05 \cdot 10^{5} \\ 170, 7300 \\ 230 \\ 5 \end{array} $	788 266 2.08 4.40 5.10^{7} $\leq 8.10^{3}$ 1.4 not calculated yet	
Measured Properties with HV Peak on axis electric field (MV/m) Peak surface electric field (MV/m) Peak magnetic field (mT)	Gun 34.5 57.3 110.4	Booster 34-40 34.4-40.4 75.5-89	Linac NA NA NA	

See A. Neumann et al., SRF 2015

Overall layout of the cavity

Stiffening ring: $\Delta f/\Delta P$ minimized to reduce microphonics

HZDR cathode insert and choke cell design:

Proven system Cathode exchange with HZDR

 $0.4 \cdot \lambda/2$ cell + full cell: **Optimized** emission phase

Chimney 22 cm²~35 W at 1.8 K about E_{peak} =45 MV/m at Q_0 =3.5·10⁹

> 106 mm beam tube: Allows propagation of lowest TM₁₁₀ mode: **HOM** studies

3 pick-up antennas lto measure HOM polarization

Blade tuner with motor and piezo tuner:

Microphonics compensation

2xCW modified TTF-III Coupler: Q_{ext} 3.6·10⁶ for up to I_{avq} =4 mA, 10 kW each

Study 2 coupler operation → High power version next step 8

Integration into cryo-module

Optimization of RF properties: Beam dynamics + dark current

- Highest E_{emitt} favorable, but cathode also functions as field emitter
 - → highest on-axis field E_{max} few mm behind cathode to reduce dark current and still allow high performance
 - → Length of half-cell optimized for high emission phase φ_{emitt}
 - → By retractable cathode and backwall inclination E_{cath}<E_{max} and focussing RF effect increased
- Any losses and thus field in insert area minimized by filter (Choke cell)

Higher order mode damping

A. Neumann, HOMSC16, Warnemünde

Reality check: Production status after welding (2013)

Half-cell → After tuning 5.7 mm too short

•	Cavity was first of its kind: prototype, complicated structure
	→ unfortunately the design geometry was not fully met

- Half cell too short → implications on beam dynamics and peak field ratios
- Created much extra work to adapt cathode insert tube, magnetic shielding, couplers, tuning mechanism, etc...

Design*	Produced				
f TM ₀₁₀ π-Mode (MHz)					
1298.823	1298.85				
R/Q (Ω)					
150.4	132.5				
G (Ω)					
174	156.7				
B_{peak}/E_0 (mT/(MV/m))					
2.27	2.18				
E _{peak} /E ₀					
1.45	1.66				
E_{cath}/E_0					
0.743	0.743				
$E_0/E_{acc}(\beta=1)$					
1.79	1.82				
	12				

2nd test series after workshop modifications

တိ

After work on the helium vessel a further test was required:

- Unfortunately the cavity was vented by a short vacuum hose
- First cavity multipacted and eventually quenched at low fields (as seen by PIC simulations and OSTs during VTS test)
- This was overcome by RF processing (yellow dots) → finally quenched at 35 MV/m
- The cavity was recovered by thermal cycle above T_C and achieves the design field of bERLinPro

Peak fields achieved:

 $E_{\rm peak}$ =57.3 MV/m $B_{\rm peak}$ =110.4 mT Corresponds to $E_{\rm acc}$ =26 MV/m of a TESLA cavity Green data points: Q₀ measured by helium evaporation

2.5 MeV, Q_0 =5.3·10⁹@ 1.8k Satisfactory

Cold mass assembly

Module

"large cold string"

 After horizontal acceptance test assembly of small cold string in ISO4/5 clean room:

Valve, RF coupler, Cavity, cathode cooler with Petrov filter, gate valve and cathode tube with corner valve

 Follow up horizontal test in module configuration to check if cavity "survived" procedure

Impressions of the assembly

Mounting of the Petrov filter and cathode carrier

Dummy cathode: concentricity check

What do you see here: 3 pick-up antennas

Ports for twin coupler arrangement
Part of half-cell back wall, large grain
Niobium, grain boundaries visible

Used N_2 overflow for all steps.

Flow direction: Assuming Cavity being the most clean part

Final steps and done

Special thanks to DESY MKS-3: Axel Matheisen, Manuela Schmökel, Marco Schalwat, Birte van-der-Horst et al. for training, support, discussion and participation in cold mass assembly!

All that remains

Horizontal acceptance test

Small cold string after assembly and during pump down in clean room

Final acceptance test at HoBiCaT before completion of string with:

Beam tube and HOM absorber, Solenoid, valves and transition bellow

Prior to
Installation
into
HoBiCaT

This coupler was
not connected

1 of 4 piezos in

blade tuner

Horizontal acceptance test: Performance kept!

Unfortunately cryo-plant break down → no unloaded HOM test!

Latest assembly attempts: HOM load

 Losses by fundamental mode in stainless steel tube no problem,
 < 0.8 W (add cooling braids

Resistive wall wakes of an issue?
75 mW losses at 5 mA, 77 pC, σ_z
3mm → ok
Influence on the beam: 0.196 V/pC
instead of 0.03 V/pC → ok
Also observed surface roughness
→ ok
100μm would lead to 1.15 W at 5
mA (worst case)

Next: Finalize string!

Linac module requirements

 Low to zero beam power, thus high Q_L operation at low power possible → High mechanical stability required (Q_L 5·10⁷, Δf/ΔP~0)

- The string needs to deliver 14.8 MV per cavity, thus E_{acc} ≤ 20 MV/m
- Strong HOM damping required because of interaction with two 100 mA beams
 Q_{ext} lowest dipole ≤5·10⁴
- Beam is injected with 6.5 MeV, still soft → coupler kicks and emittance preservation need to be considered......further power overhead and tuning because of

Bellows and absorbers required but also risk for cavity operation (Wakes, dust)

Design concept

Single cell + cavity study:

Wake+ eigenmode analysis

- → Study RF properties Peak field ratios, losses
- → HOM damping
- → Beam break-up analysis
- → Coupler kicks

Module based RF studies:

- → Coupled system analysis: Wake, concatenation (U Rostock), HOM orientation
- → Coupler kicks
- → Dark current studies Affects: Cavity-to-cavity distance and coupler orientation

T. Galek

Cavity construction:

- → Thermal management TM₀₁₀ losses, intercepts
- → Mechanical studies
- → HOM design

Integrated design

Linac cavity

TTF-III for variable coupling:

High Q₁ operation possible

5 waveguides to cover HOM polarizations: Well defined cutoff

 R/Q_{\parallel}

 $f_{\text{TM}_{010}} - \pi$

7 cell: Cornell's ERL

mid-cell + modified end-cells

(asymmetric)

3rd order spline nose transition to low cutoff beam tube

2.08 $E_{\rm peak}/E_{\rm acc}$ 4.4 mT/MVm⁻¹ $B_{\rm peak}/E_{\rm acc}$ $\leq 8 \cdot 10^{3}$ $Q_{\rm ext}$ TM₁₁₀ dipole 1.596 GHz Beam tube TE₀₁ cutoff Waveguide TE₁₀ cutoff 1.576 GHz $1 \cdot 10^7 - 1 \cdot 10^8$ $Q_{\rm L}$ for TM₀₁₀- π P_{forward} at $Q_{\text{L}} = 5 \cdot 10^7 (\Delta f = 0)$ 1.4 kW

Combine Cornell's low peak field design with JLab's HOM damping approach

Basic RF design

Number of cells	7
R/Q_{\parallel}	788Ω
$f_{{ m TM}_{010} - \pi}$	1.3 GHz
$E_{\rm peak}/E_{\rm acc}$	2.08
$B_{\rm peak}/E_{\rm acc}$	4.4 mT/MVm ⁻¹
$Q_{\rm ext}$ TM ₁₁₀ dipole	$\leq 8 \cdot 10^3$
Beam tube TE ₀₁ cutoff	1.596 GHz
Waveguide TE ₁₀ cutoff	1.576 GHz
$Q_{\rm L}$ for TM ₀₁₀ - π	$1 \cdot 10^7 - 1 \cdot 10^8$
P_{forward} at $Q_{\text{L}} = 5 \cdot 10^7 (\Delta f = 0)$	1.4 kW

- Final RF design obtained by quasi optimization for field-flat, high R/Q_{||}, low field ratios, but low HOM Q_{ext} design Basis: Cornell ERL shape
- Low Q_{ext} for all dipole modes within reach of calculation (3D)

However, problem of dipole-like transverse R/Q component on-axis for TM_{mnp} m≥2 still unresolved

Multipole decompositon of several integration paths

Obstacles of first end-group section

Compare 5WG + coaxial FPC system (2 coupler depths) with 6WG system

Current limit by TM₂₁₀

→Does not appear in 6 WG structure

Trapped modes appeared in transition from iris to Y-shaped waveguide → Gives strong dipole kick, second strongest BBU limiting mode

This section needed to be reworked

Obstacles of first end-group section: Coupler kick

New end-group for kick reduction and trapped mode tuning

Module based kick analysis

Emittance dilution by variation of field experienced by different slices of bunch \rightarrow function of bunch length which samples the coupler field during passage

EM and PIC based coupler kick study: below 0.5% emittance increase in both transverse planes

Kick is integral effect on bunch's center of mass, depends on FPC's orientation in string

Triggered study:
Which orientation optimal w.r.t.
coupler kicks and HOM damping
→ Concatenation by U Rostock

First module based HOM/Wake studies

- Study influence of length of interconneting beam tube on HOM spectrum
- Comparing reference run done with full cavity as half cell open boundary somewhat inaccurate
- Mode of TM₀₂₀ type closed to beam harmonic at 3.9 GHz.
 Typically they have low impedance because of transit time effect
- Resolution of Wake calculation limited as very high computational effort

But three different sets of interconnecting groups exist:

Intense Eigenmode search at beam harmonics

No dangerous mode on resonance to harmonic

Cavity design issues w.r.t. HOMs

3-sided cooling of end-group/ waveguides→
Needed to prevent heating by leaking fundamental mode

5 WG damper

Integration of original TTF-III coupler design

What type of flange/flange material?
Length of superconducting section

Blade tuner

Mag. Surface field

in end-group

PS Wake Solver based module RF studies

Length =3.855 m

Reduced version:

One waveguide group between cavities (4x3 WG)

Wake solver settings: σ_s = 9mm \rightarrow up to 11.3 GHz analyzed, offset 2.1 mm in both transverse planes 158h on a 2 x Xeon2643v2 6-core **256 GB RAM**

Strong coupling of beam tube to TM₀₁₁ band, $6/7\pi$ type, localized in end-cells and tube

→ Complete BBU and long. HOM analysis planned with Rostock data

HOM absorbers for the Linac cavity

Wake data and EM based fundamental mode data serve as input to HOM load design

Freq (GHz)	TE10	TE11	TM11	TE30	Total (W)
2.6	8.370				
5.2	3.962	2.534	10.482	0.926	
7.8	0.468				
Max power (W/100MHz bin)	8.370	2.534	10.482	0.926	
Total mode power (W)	12.885	2.789	10.738	0.982	27.394
total of modes to sim (W)					26.742

Stainless steel, Cu coated

J. Guo, F. Fors, JLab

SiC wedges brazed on Cu Pegboard

Load designed for 25 W

Room temperature Cooling water channel

Imported RF power losses mapped to the absorber

Thermal analysis results

Currently: Optimization of intercepts and flange position

Acknowledgements

Incomplete list of people helping with collaborative effort and discussion:

J. Teichert, A. Arnold, P. Kneisel, M. Liepe, R. Rimmer, H. Wang, W. Xu, S. Belomestnykh, E. Zaplatin, E. Kako, R. Eichhorn, J. Sekutowicz, G. Ciovati, L. Turlington, D. Reschke, A. Matheisen, M. Schmökel, B. van-der-Horst, J. Smedley, V. Volkov, D. Kostin, I. Will, W.-D. Möller, M. Schalwat, U. van Rienen, T. Galek, B. Riemann, T. Weis, K. Brackebusch, T. Flisgen + many more

Special thanks to:

H.-W. Glock, J. Guo and F. Fors for additional material